
An Empirical Study of the Personnel Overhead of
Continuous Integration

Marco Manglaviti, Eduardo Coronado-Montoya, Keheliya Gallaba, and Shane McIntosh
Department of Electrical and Computer Engineering

McGill University
Montréal, Canada

{marco.manglaviti,eduardo.coronado-montoya,keheliya.gallaba}@mail.mcgill.ca, shane.mcintosh@mcgill.ca

Abstract—Continuous Integration (CI) is a software devel-
opment practice where changes to the codebase are compiled
and automatically checked for software quality issues. Like any
software artifact (e.g., production code, build specifications), CI
systems require an investment of development resources in order
to keep them running smoothly.

In this paper, we examine the human resources that are
associated with developing and maintaining CI systems. Through
the analysis of 1,279 GITHUB repositories that adopt TRAVIS CI
(a popular CI service provider), we observe that: (i) there are 0
to 6 unique contributors to CI-related development in any 30-day
period, regardless of project size; and (ii) the total number of CI
developers has an upper bound of 15 for 99.2% of the studied
projects, regardless of overall team size. These results indicate
that service-based CI systems only require a small proportion
of the development team to contribute. These costs are almost
certainly outweighed by the reported benefits of CI (e.g., team
communication and time-to-market for new content).

I. INTRODUCTION

Continuous Integration (CI) is a common practice in the
software industry to integrate source code changes into the
official repositories of software projects. Under CI, each
incremental change to a software system is automatically
compiled (if necessary), tested, and scanned for quality issues.
In theory, CI improves defect reporting and reduces developer
overhead, since unlike less frequent build cycles, problems can
be caught early, while tradeoffs and design decisions are still
fresh in the developers’ minds.

CI is particularly useful for software projects where a
project code base and/or development team is large and
distributed. Maintaining stability in such a code base becomes
a particularly challenging issue, especially as systems tend to
accrue complexity as they age [1]. Open source projects often
need to deal with issues of large and distributed teams, since
these projects often undergo many changes that are submitted
by a variety of contributors.

TRAVIS CI is one of the most popular cloud-based platforms
for providing CI services to software projects. The use of
TRAVIS CI in a software project requires the presence of a
configuration file, namely .travis.yml, in the root directory
of its repository. This file specifies the programming language
runtimes, their versions and other environment parameters for
building and testing the project. It is also used to define all
CI-related tasks that are to be executed during the integration

process, the order in which these tasks must to be executed,
and the external tools that are needed. Therefore, modifying
this configuration file relates to time spent by developers on
the development and maintenance of the CI specification.

As with any software technology, adopting TRAVIS CI
comes at a cost—developers must spend time and effort on
the development and maintenance of the CI specification. For
example, CI specifications need to change in order to adapt to
changing source code requirements and dependencies.

In this paper, we study the personnel overhead that is
introduced by adopting TRAVIS CI in open source software
projects. More specifically, we examine the trend between
the growth of TRAVIS CI contributors as team sizes increase,
and projects age. Through the analysis of the MSR Challenge
dataset [2], we address the following research questions:

(RQ1) How quickly do TRAVIS CI teams grow?
We find that the TRAVIS CI team size tends to plateau.
Indeed, TRAVIS CI team size is consistently in the
range of 0–6 developers per 30-day time period for
99.9% of the studied projects.

(RQ2) Is there a relationship between the TRAVIS CI team
size and the total team size?
No, despite observing project team sizes of up to 917
contributors, we do not find any TRAVIS CI teams
larger than 41 contributors.

These results lead us to conclude that the personnel overhead
that is introduced by TRAVIS CI is not directly proportional
to both the team size and development time. Specifically, the
results demonstrate that with an increasing contributor base
and an aging software system, the overall personnel cost of
maintaining CI tends to stabilize.
Paper organization. The remainder of the paper is organized
as follows. Section II describes the design of our case study,
while Section III presents the results. Finally, Section IV draws
conclusions and outlines avenues for future work.

II. CASE STUDY DESIGN

In this section, we outline the two-step approach that we use
to analyze the MSR Challenge dataset [2] in order to address
our research questions. Figure 1 provides an overview of our
approach. Below, we describe each step in the approach.



Fig. 1. An overview of our approach to study the MSR Challenge data set.

A. Data Filtering
The challenge data set [2] identifies 1,300 GITHUB reposito-

ries using TRAVIS CI to manage their build data. The challenge
data set was used to identify projects with at least 50 TRAVIS
CI builds and minimum 10 watchers on GITHUB [2]. However,
not all of these repositories were available or suitable for our
analysis. Thus, we first filter the set of repositories according
to the steps that we outline below.
DF 1: Filter unavailable projects. We began our study by
selecting all of the projects in the TRAVIS CI data set [2]. Next,
we attempted to clone the corresponding GITHUB repositories
for each project. Of the 1,300 projects that were mentioned in
the TRAVIS CI data set, 1,295 could be cloned from GITHUB
at data collection time (October 3rd, 2016). The five projects
that were no longer available for analysis included four deleted
projects and one project that had switched from GITHUB’s
open-source plan to the private one.
DF 2: Filter unsuitable projects. Software development is
a rapidly moving target. Technologies like TRAVIS CI are
adopted and abandoned at a breakneck pace. To prevent projects
that are no longer using TRAVIS CI from introducing noise in
our analyses, we filter out projects that no longer contain a
.travis.yml file in their repositories. Of the 1,295 projects
that we selected in Stage DF 1, 1,279 repositories still contained
a .travis.yml file at data collection time.

B. Data Analysis
After filtering the raw dataset, 1,279 repositories survive for

further analysis. Prior to conducting our analysis, we normalize
the repository data to a common timespan (DA 1), associate
contributor IDs with each commit (DA 2), compute team size
metrics (DA 3), and analyze trends in team size (DA 4).
DA 1: Log Calibration. In order to produce a more precise
analysis of the trend of contributors to the TRAVIS CI
specifications over time, we opt to align the commit logs
of each project at the first commit to the .travis.yml file.
This allows us to compare the number of (and trend in) project
and CI contributors across the projects with a common starting
point. The timespan of analysis for all projects was truncated
at the data collection date, i.e., since each repository for a

0 10 20 30 40 50 60

Time Periods

D
en

si
ty

 o
f P

ro
je

ct
s

0%
20

%
40

%
60

%
80

%
10

0%

Fig. 2. The percentage of the projects with commit activity in each time
period.

project in the studied system was cloned locally for use in
the data analysis phase, the commit logs for each project
terminate at the last commit prior to October 3rd, 2016. Since
each studied project may have adopted TRAVIS CI at different
times, the studied projects have different time spans. Figure 2
provides a density plot of the duration of the studied projects.
Moreover, Figure 3 shows the concentration of projects with
commit activity in a given time period using the shade of the
hexagon-shaped bins.
DA 2: Associate contributors with commits. For each
studied repository, we iterate over every commit in the studied
time span in order to identify contributors. We use the author
email field in the metadata of the commit as a contributor ID.

Past work has noted that email addresses in open-source data
sets are noisy [3]. For example, two (or more) email addresses
may refer to the same individual. In order to disambiguate
email aliases that refer to the same person, we use a similar
approach to that of Bird et al [3]. We remove the domain from
the email address and normalize the name by removing all



0

5

10

15

20

0 100 200 300 400 500
Overall Team Size

Tr
av

is
 T

ea
m

 S
iz

e

1 4 16 64
Projects

Fig. 4. TRAVIS CI team size plotted against overall team size. The white
line indicates a Loess-smoothed curve with a shaded area indicating the 95%
confidence interval.

punctutation. We then measure the Levenshtein edit distance
between the name and any previous ID for the project in
question. If the distance is within a threshold of 3, we attribute
both email addresses as being the same contributor.
DA 3: Compute team size metrics. Now that each commit
has been assigned to a contributor, we compute two types of
contributor metrics. First, to serve as a baseline, we compute
the number of unique contributors to all of the repository files,
i.e., the magnitude of the set of unique contributor IDs who
have made contributions to the repository in question. Next,
we compute the number of unique contributors to the TRAVIS
CI specifications, i.e., the magnitude of the set of unique
contributor IDs for the .travis.yml file.
DA 4: Analyze trends. Finally, to address our research
questions, we analyze our two contribution metrics in two ways.
First, to address RQ1, we analyze our contribution metrics
with respect to time. We use 30-day periods to recompute our
contribution metrics and study their trends over time. Second, to
address RQ2, for each studied system, we compute one overall
measurement of our contribution metrics using the entire time
span. Then, we plot the TRAVIS CI team size measurements
against the overall team size measurement.

III. CASE STUDY RESULTS

In this section, we discuss the results of our case study
with respect to our two research questions. For each research
question, we first present our approach to addressing it and
then discuss the results that we observe.

RQ1: How quickly do TRAVIS CI teams grow?

Approach. To address RQ1, we compute the TRAVIS CI and
overall team sizes for each studied project in 30-day time
periods. Figure 3 plots the results of each project using scatter
plots. To address concerns of overplotting (i.e., several points
appearing in a small space), we apply hexagonal binning to
the raw scatter plot data. The darker the shade of any given
hexagon, the more projects that fall within the bin.
Results. As projects age, the TRAVIS CI team size tends
to plateau. Figure 3 shows that as the studied projects age,
the number of unique contributors to the .travis.yml file
remains relatively constant. On the other hand, the overall
team size shows a more quickly and consistently growing
trend. This suggests that as projects accumulate contributors,
the proportion of the team that needs to maintain the TRAVIS
CI specifications does not need to grow proportionally.

Focusing on the left quadrant of Figure 3 (i.e., Project Team
Size), we observe that the projects in the data set have a wide
range of growth rates after the TRAVIS CI configuration file
has been introduced (recall that time period 0 indicates when
the TRAVIS CI configuration file is introduced). Indeed, there
are projects like Spree that grow rapidly, growing from a team
size of 203 to 695. Most other projects grow more slowly.

On the other hand, the right quadrant of Figure 3 (i.e.,
TRAVIS CI Team Size) demonstrates that the team that
maintains the .travis.yml file does not exceed 6. Note that
having 0 contributors to the .travis.yml file indicates the file
was not modified as part of any commit during that 30-day time
period. This is particularly meaningful because it demonstrates
that as projects grow and an increasing number of contributors
are modifying source code, the number of developers modifying
the TRAVIS CI configuration file tends to plateau.

Observation 1: The number of contributors to the TRAVIS
CI specification is consistently between 0 and 6 developers
per 30-day time period over a project’s lifetime

(RQ2) Is there a relationship between the number of CI
contributors and the total team size?

Approach. We compute the total number of contributors to
the .travis.yml file and the overall team size of each project.
Figure 4 shows the scatter plot for these two values in all of
the studied projects, with hexagonal binning used to address
overplotting. In addition to the hexagon-binned scatter plot,
Figure 4 shows a trend line using a Loess-smoothed regression
(white line) with a 95% confidence interval (translucent black
band). For clarity, we have removed one project with extreme
values (1000+ contributors) from the dataset when plotting
Figure 4. The shade of each hexagon is proportional to the
number of projects that fall within the bin.
Results. When we set out to explore this research question,
our initial intuition was that when a project becomes popular
and attracts contributors, the number of contributors who need
to modify the .travis.yml file would increase respectively.
As can be observed in Figure 4, The total number of TRAVIS
CI contributors remains relatively constant—fewer than 15



Project Team Size Travis CI Team Size

0 20 40 60 0 20 40 60

0

25

50

75

100

Time Periods (30 days)

Te
am

 S
iz

e

1 8 64 512
Projects

Fig. 3. TRAVIS CI and overall team size per 30-day time period.

developers contribute to the .travis.yml file of 100% of the
studied projects with a total team of 50 or fewer developers.
The trend increases slightly with the growth of a project’s team
size, but is not proportional to team size.

By focusing on the range of x-axis (total project contributors)
as compared to the range of the y-axis (total TRAVIS CI con-
tributors), we observe that projects with many total contributors
still have roughly the same number of TRAVIS CI contributors
as projects with few total contributors. Indeed, while there
is a slight increase in the number of contributors to the
.travis.yml file, the increase is minimal and plateaus between
10-15 total contributors for projects with 50 contributors or
more. This is emphasized by the Loess-smoothed regression
line in Figure 4. With the exception of a few projects, all
of the projects with more than 100 contributors have a total
number of TRAVIS CI contributors of 15, with the exception
of 7 projects. This contradicts our initial intuition that the
number of contributors to the TRAVIS CI configuration file
would increase proportionally as team size increases. This
would, in theory, allow teams to scale up while dedicating
a relatively small team to CI maintenance and configuration.
Future work could examine the trend between the advantages of
CI (i.e. increased successful builds) and the personnel overhead
associated with maintaining CI.

These results lead us to conclude that the personnel overhead
of CI for open source software projects tends to decrease with
project growth, since only a smaller percentage of developers
make changes to the TRAVIS CI configuration file as the team
size increases.

Observation 2: The number of contributors to the TRAVIS
CI configuration file is bounded at 15 in almost all cases
regardless of team size.

IV. CONCLUSIONS

Adopting new software development practices and tech-
nologies usually come at the cost of the initial development,
maintenance, and operation of these new technologies. In this
paper, we observe that:

• As projects age, the maintenance costs of TRAVIS CI
plateaus within the range of 0 to 6 contributors during
any given 30-day time period, regardless of team size.

• As projects accumulate contributors, the number of
TRAVIS CI contributors remains relatively consistent at a
maximum of 15 developers.

These results lead us to conclude that for projects with
growing contributor bases, adopting CI becomes increasingly
beneficial and sustainable as projects age. Indeed, maintenance
effort of the TRAVIS CI configuration file does not in fact
increase over time. Instead, we show that over an increasing
project development lifecycle, CI maintenance and development
is unaffected by team growth. In future work, we plan to in-
vestigate commit size and content of TRAVIS CI contributions.

In order to aid in future replication of our results, we make
our data and scripts publicly available online.1

REFERENCES

[1] L. A. Belady and M. M. Lehman. A model of large program development.
IBM Systems Journal, 15(3):225–252, 1976.

[2] M. Beller, G. Gousios, and A. Zaidman. Travistorrent: Synthesizing
travis ci and github for full-stack research on continuous integration. In
Proceedings of the 14th Int’l Conf. on Mining Software Repositories
(MSR), 2017.

[3] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan. Mining
Email Social Networks. In Proceedings of the 3rd Int’l Conf. on Mining
Software Repositories (MSR), pages 137–143, 2006.

1https://dx.doi.org/10.6084/m9.figshare.4803172

https://dx.doi.org/10.6084/m9.figshare.4803172

