
Refactoring Asynchrony in JavaScript
Keheliya Gallaba∗, Quinn Hanam†, Ali Mesbah†, Ivan Beschastnikh†

∗McGill University, Canada
†University of British Columbia, Canada

keheliya.gallaba@mail.mcgill.ca, [qhanam, amesbah]@ece.ubc.ca, bestchai@cs.ubc.ca

Abstract—JavaScript is a widely used programming language
that makes extensive use of asynchronous computation, particu-
larly in the form of asynchronous callbacks. These callbacks are
used to handle tasks, from GUI events to network messages, in
a non-blocking fashion.

Asynchronous callbacks present developers with two chal-
lenges. First, JavaScript’s try/catch error-handling mechanism is
not sufficient for proper error handling in asynchronous contexts.
In response, the JavaScript community has come to rely on the
error-first protocol, an informal programming idiom that is not
enforced or checked by the runtime. Second, JavaScript callbacks
are frequently nested, making them difficult to handle (also
known as callback hell). Fortunately, a recent language extension
called promises provides an alternative to asynchronous callbacks.
The adoption of promises, however, has been slow as refactoring
existing code to use promises is a complex task.

We present a set of program analysis techniques to detect in-
stances of asynchronous callbacks and to refactor such callbacks,
including callbacks with the error-first protocol, into promises.
We implement our techniques in a tool called PROMISESLAND.
We perform a manual analysis of four JavaScript applications to
evaluate the tool’s precision and recall, which are, on average,
100% and 83%, respectively. We evaluate PROMISESLAND on
21 large JavaScript applications, and find that PROMISESLAND
(1) correctly refactors callbacks to promises, (2) outperforms a
recent related refactoring technique, and (3) runs in under three
seconds on all of our evaluation targets.

I. INTRODUCTION

Modern web applications make extensive use of JavaScript,
which is one of the most widely used programming languages
in the world1. Unlike many modern languages, programs
written in JavaScript are single-threaded. This means that
JavaScript programs cannot create additional threads to ex-
ecute long running tasks such as IO operations. To overcome
this limitation, developers use JavaScript APIs that accept a
callback parameter [19]. Such API functions begin a task,
such as an HTTP request, in another process initiated by the
JavaScript engine and immediately return control to the callee.
When the task completes, the JavaScript engine executes the
callback function (asynchronously) to notify the program and
to pass the program any data generated by the task. Because
the API function returns control immediately, the task does
not block the rest of the program. However, this model
of invoking a callback asynchronously complicates control-
flow and degrades program comprehension [8], [43]. More
specifically, JavaScript lacks proper mechanisms to manage

1According to the 2017 survey of 64K developers by Stack Overflow, for
the fifth year in a row, JavaScript is the most commonly used programming
language [40].

error handling in asynchronous callbacks and to maintain
nested asynchronous callbacks.

In JavaScript, an error that occurs during the execution of
an asynchronous task cannot be handled with the traditional
try/catch mechanism because the asynchronous task is run
outside the existing call stack. For example, in Listing 1 an
exception generated during setTimeout will not be caught
inside the catch block. Therefore, an error generated by an
asynchronous function, such as setTimeout, can only be
handled by passing it as a parameter to the callback function.

1 t ry {
2 setTimeout (func t i on () {
3 throw new Error ('Uh oh ! ') ;
4 } , 2000) ;
5 } catch (e) {
6 conso l e . l og ('Caught the e r r o r : ' + e . message) ;
7 }

Listing 1. A JavaScript snippet illustrating that try/catch statements are
ineffective for handling errors in asynchronous callbacks.

The JavaScript community has come up with a convention
for error propagation in asynchronous contexts called the
error-first protocol. In this idiom-based protocol, the first
parameter of the callback is reserved for communicating
errors and the other parameters are used for passing data.
Listing 2 illustrates this protocol: an error generated by the
asynchronous function fs.readFile is passed to the anonymous
function callback as the argument err and the callback includes
appropriate error-handling code. A key limitation of the error-
first protocol is that it is a convention and developers are not
obligated to use it. As a result, developers manually check
the function arguments to see whether a function follows the
protocol, making it an error-prone practice.

1 f s . r e adF i l e ('/ foo . txt ' , f unc t i on (err , r e s u l t) {
2 i f (e r r) {
3 conso l e . l og ('Unknown Error ') ;
4 re turn ;
5 }
6 conso l e . l og (r e s u l t) ;
7 }) ;

Listing 2. A JavaScript snippet illustrating the error-first protocol.

Another challenge developers face when using asyn-
chronous callbacks is callback nesting. A callback function
that contains calls to other asynchronous functions creates
what is known as “callback hell” [35]. This problem is
exacerbated with anonymous functions, which are declared

within other functions and obfuscate the control flow within
their parent function. A recent empirical study has found that
asynchronous nested callbacks are prevalent in practice [19].

Promises is a new feature of ECMAScript6 [1] designed
to help with the error handling and nesting problems associ-
ated with asynchronous callbacks. Promises explicitly register
handlers for executions that are successful and executions
that produce errors. This removes the need for the error-first
convention. We carried out an exploratory study in which we
explored the extent to which developers refactor callbacks to
promises and how they perform such refactorings (detailed in
Section IV). We found no mention or use of refactoring tools:
it seems that today developers manually refactor asynchronous
callbacks into promises.

In this paper, we propose a set of static analysis techniques
to support automated refactoring of asynchrony in JavaScript
by: (1) discovering instances of asynchronous callbacks, and
(2) transforming these instances into promises.

We implemented these techniques in an open source tool
called PROMISESLAND [6] and evaluated it by following three
research questions:

RQ1: Can PROMISESLAND accurately identify instances
of asynchronous callbacks to be converted?

RQ2: Can PROMISESLAND correctly refactor
asynchronous callbacks to promises?

RQ3: Is PROMISESLAND efficient?
For the evaluation, we used 21 open source JavaScript

projects containing a total of 108,615 lines of code. PROMIS-
ESLAND ran in under three seconds on all of the projects
we evaluated. We reason about the correctness of PROMIS-
ESLAND given a sound and complete points-to graph and
assume correct use of the error-first protocol. While no static
method for building a points-to graph for JavaScript code is
both sound and complete, we provide evidence that available
approximations are sufficiently accurate for our analysis in
most cases.

In an evaluation of recall, PROMISESLAND automatically
discovers 39 of 47 (89%) asynchronous callbacks as candidates
for automated refactoring. In an evaluation of precision on 188
asynchronous callbacks from 56 subjects, test suites for these
projects – which execute the 188 asynchronous callbacks at
least once – pass before and after PROMISESLAND performs
the refactoring. This suggests that the refactoring was per-
formed correctly in all cases.

II. RELATED WORK

Refactoring support for asynchronous programming in An-
droid apps was proposed by Dig et al. [14], [28]. However,
they target the Java programming language.

JavaScript is a challenging language for software engi-
neering and recent research advances have made the use of
static analysis on JavaScript more practical [9], [17], [26],
[27], [29], [33], [34], [39]. Other techniques mitigate the
analysis challenges by using a dynamic or hybrid approach
[7], [21], [31], [44]. Others have considered to improve the
core language through abstraction layers [42].

We performed an empirical study [19] on the use of call-
backs in 138 JavaScript programs. The findings of that study
motivate the need for tool support in managing callbacks.
Three relevant findings are (1) more than half of all callbacks
are asynchronous (both in client-side and server-side code), (2)
on average every 5th function adheres to the error-first protocol
(i.e., developers are inconsistent in their use of this idiom), and
(3) 27% of the studied programs used promises (indicating that
tool support can increase the adoption of promises).

The closest prior work is by Brodu et al. [12] who propose
a compiler for converting nested callbacks into a sequence
of Dues, which is a simpler version of promises. There are
several drawbacks to this approach: (1) the source code does
not change, so it does not eliminate the issues with understand-
ability, (2) Dues do not support the critical notions of rejection
and resolution in promises and can therefore only re-write the
error-first protocol in a simplified notation, (3) their approach
requires developers to manually specify asynchronous call-
backs that are suitable candidates to be converted. In contrast
PROMISESLAND is completely automated. Specifically, when
evaluating PROMISESLAND on projects evaluated in [12],
we found that our technique is able to refactor 235% more
asynchronous callbacks than the tool proposed in [12].

The third-party library Bluebird [10], provides functions to
wrap callbacks as promises. This library does not automati-
cally refactor code; developers must locate callback functions
and correctly perform the refactoring. PROMISESLAND auto-
matically locates and refactors callbacks to promises.

A number of other JavaScript refactoring tools have been
previously proposed. For example, Meawad et al. [30] pro-
posed a tool to refactor eval statements into safer code.
Feldthaus et al. [15], [16] developed a technique for semi-
automatic refactoring with a focus on renaming. And, several
projects consider ways to detect and refactor legacy JavaScript
code to use classes, which are part of the ES6 standard [36],
[37]. This existing work does not focus on detecting or
refactoring of asynchronous callbacks.

III. BACKGROUND

In JavaScript, an asynchronous function is used to schedule
a long-running task, so that the execution of the program can
continue in a non-blocking manner. Asynchronous functions
initiate or schedule a task to be completed in the future, but
return the control back to the caller before the task completes.
Callers of asynchronous functions must often specify a con-
tinuation function that (1) acts as the point where control is
returned to the program after the asynchronous task completes,
and (2) accepts data or errors generated by the task [12].

A. Drawbacks of callbacks

A callback is a parameter that is used as a function.
JavaScript developers frequently use callbacks to specify
continuations for asynchronous task [12]. However, using
callbacks as continuations has three drawbacks.

Callback nesting. When asynchronous functions must be
completed sequentially, callbacks must be nested. Because

each callback adds a new function definition and indentation
level, this decreases the understandability of the program and
is known as “callback hell” [35]. Listing 3 illustrates an
example with three levels of callback nesting.

1 getUser (' jackson ' , f unc t i on (e r ror , user) {
2 i f (e r r o r) {
3 handleError (e r r o r) ;
4 } e l s e {
5 getNewTweets (user , f unc t i on (er ror , tweets) {
6 i f (e r r o r) {
7 handleError (e r r o r) ;
8 } e l s e {
9 updateTimel ine (tweets , f unc t i on (e r r o r) {

10 i f (e r r o r) handleError (e r r o r) ;
11 }) ;
12 }
13 }) ;
14 }
15 }) ;

Listing 3. A sequence of asynchronous operations.

Callback nesting in JavaScript is pervasive and is widely
considered a barrier to software comprehension. A study on
callbacks in JavaScript found that most callbacks are nested
to two levels and that nesting can be as deep as 8 levels [19].
Error handling. Because asynchronous tasks are executed
outside the call stack, errors generated during the execution
of asynchronous tasks must be propagated to callbacks as
arguments. Consider Listing 3: the two callbacks accept an
error parameter, which they must check to determine if an
error was raised in the asynchronous function. This style is
known as the error-first protocol and produces code which
is less understandable because (1) it is inconsistent - there is
no standard way for checking errors and (2) it obfuscates the
control flow by adding extra branches to the callback function.
Synchronization. Callbacks do not have built-in synchro-
nization and nothing prevents a callback from being invoked
multiple times. When such multiple-invocation behavior is
undesirable, it may lead to bugs. Listing 4 illustrates an
example in which the callback cb is invoked twice when
foo evaluates to true. Client code that provides a cb to this
code must use expensive defensive programming techniques
to catch and enforce a proper number of cb invocations.

1 handler (cb , foo) {
2 i f (foo) cb (foo) ;
3 cb (foo) ;
4 }

Listing 4. Callbacks are vulnerable to synchronization bugs.

B. A promising solution

A promise is a design pattern that handles asynchronous
events and solves many of the callback-related problems
described previously. While promises have been used for some
time in JavaScript with third party libraries, the next ECMA
specification (version 6) [2] of the language has promises
built in. With the promises design pattern, instead of accepting
a callback as the continuation function, an asynchronous

function returns a Promise instance. This instance represents
a value that will be available sometime in the future, for
example, after a deferred task has completed.

1 getUser (' jackson ')
2 . then (getNewTweets , handleError)
3 . then (updateTimeline , handleError) ;

Listing 5. A sequence of async operations composed with promises.

Promises solve many of the problems associated with call-
backs. Consider Listing 5, which is semantically equivalent to
Listing 3, but uses promises. Callback nesting is eliminated by
chaining promises – in Listing 3 the promise for the second
function call getNewTweets is chained to the promise re-
turned by getUser. Error handling is now explicit. The success
handler (the first parameter of .then) and an error handler (the
second parameter of .then) are specified separately without
additional control flow – In Listing 3 getNewTweets and
updateTimeline are success handlers, while handleError is
the error handler for both promises. Basic synchronization is
now handled automatically because promises guarantee that
the error and success handlers only execute once.

IV. REFACTORING TO PROMISES IN PRACTICE

We carried out an exploratory study to better understand the
extent and manner in which developers refactor callbacks into
promises. Our exploratory study consists of three parts: (1) a
manual inspection of issues on GitHub related to promises,
(2) a manual inspection of pull requests on GitHub related
to promises, and (3) an automated mining of commits that
refactored asynchronous callbacks to promises.

A. Exploring issues on refactoring

The first part of our study explored posts in GitHub’s issue
tracking system. GitHub is one of the most popular col-
laborative software-development platforms among JavaScript
developers [18] and provides the largest publicly available
dataset including developer discussions and development his-
tory. We used GitHub’s search feature to find issues related to
refactoring of asynchronous callbacks to promises.

We used the query “promise callback language:JavaScript
stars:>30 comments:>5 type:issue” to search for GitHub
issue discussions that were non-trivial (containing at least 5
comments), associated with projects that were popular (starred
by at least 30 users) and contained the terms promise and
callback. This search resulted in 4,342 issues. We considered
the first 11 issues (on the first results page) and manually
inspected the discussions associated with each issue. We found
that in the majority of issues (8 out of 11), the final consensus
was to refactor the code to use promises instead of using
asynchronous callbacks. Many discussion participants agreed
that using promises would be beneficial to the project: “I’m
very pleased with the amount of additional safety and expres-
siveness I’ve gained by using promises. I’m not dismissing
callbacks per se, but personally I find it much simpler to reason

about code using promises than code using callbacks & utility
libraries like async.”2

However, the main reasons for reluctance to migrate to
promises were (1) promises may cause significant changes
to existing APIs, and (2) the prohibitively high development
effort associated with the change.

We then narrowed down the search by including the term
refactor.3 This resulted in 351 issues, of which we inspected
the first 80. Many of these issues indicated strong demand to
refactor code to use promises. For example, one participant
stated: “So this is something that is purely for devs but I think
it is about time to do this. i.e. git-task is a great candidate
to take full advantage of promises and it would have made
implementation of #602 much easier.” 4

Many of these requests came from users of JavaScript
libraries who wanted promises as part of the library API: “Are
there any plans for promise support, alongside the callbacks
and streams? Proper promise support in any-db and any-
db-transaction would be really nice :)”5, and “Add promise
API option?”. 6 Some of the users encouraged the move to
promises by sharing their own experiences of using promises:
“We’ve recently converted pretty large internal codebases
from async.js to promises and the code became smaller, more
declarative, and cleaner at the same time.” 7

Our study of GitHub issues indicates a strong desire from
developers to have this refactoring performed on the systems
they use and maintain. Developers also noted that development
time is a factor in avoiding migration, which motivates the
need for a tool to simplify this process by both finding
refactoring candidates and by automating the transformation.

B. Exploring refactoring pull requests

The second part of our study explored pull requests on
GitHub to determine whether developers acted on suggestions
for refactoring asynchronous callbacks to promises. We did
this by searching GitHub for pull requests associated with
refactoring asynchronous callbacks to promises and manually
inspecting the results. Our search used the following query
string: “Refactor promises language:Javascript
stars:>20 type:pr”. The search resulted in 451 pull requests,
of which we inspected the first 80. We observed that most
of these pull requests were submitted as improvements to the
project and involved replacing callbacks with promises. These
were either native promises supported by the runtime or ones
provided by third-party libraries like Bluebird, Q, or RSVP.
We found that developers generally prefer promises, and also
refactor asynchronous callbacks into promises in practice. A
more detailed listing of the discussions we explored in our
study, along with listings of relevant quotes, can be found in
our online study site [4].

2 https://github.com/share/ShareJS/issues/268
3Complete query: “Refactor promises language:JavaScript stars:>20

type:issue”. We lowered the number of stars to capture more projects.
4 https://github.com/FredrikNoren/ungit/issues/603
5 https://github.com/grncdr/node-any-db/issues/66
6 https://github.com/addyosmani/psi/issues/56
7 https://github.com/meetfinch/decking/issues/18

C. Mining commits for refactorings

In the third part of our study, we used BugAid [23], a
commit mining tool, to search for examples of asynchronous
callback to promise refactoring in practice. For each commit
in a project’s history, BugAid inspects changes at the AST
level. We implemented an AST pattern-matching algorithm on
top of BugAid that searches for calls to promise constructors
(i.e., new Promise(...)) that are inserted into existing func-
tions. This pattern is conservative but mainly corresponds to
asynchronous callbacks being replaced with promises.

We mined all the 134 subject systems studied by Hanam et
al. [23]. These were selected based on curated lists of popular
Node.js applications and the top NPM modules by stars and
number of packages that depend on them. We discovered 39
valid instances of asynchronous callback to promise refactor-
ings across nine projects. This further indicates that developers
are interested in performing this refactoring in practice. We
manually inspected each of these instances and found that five
of them conform to the standard refactoring pattern matching
recommendations in developer blog posts [13].

D. Findings and goal

Our exploratory study demonstrates that developers see
many advantages in migrating to promises. However, because
of the complex control flow associated with asynchronous
callbacks, manually refactoring callbacks to promises can be
difficult. These results point to a need for tooling which can
automatically perform these refactorings.

Our goal is to develop a technique that can automatically
refactor asynchronous callbacks to promises. The approach
will (1) automatically detect candidate functions for refactor-
ing and (2) automatically refactor these functions, and their
callsites, to use promises.

V. APPROACH

In this section, we describe our techniques for identifying
refactoring candidates and transforming them to use promises.

A. Assumptions and preliminaries

It is important to note that when describing the correct-
ness of our approach, we make two assumptions. The first
assumption is that we have sound and complete points-to
analysis information. In theory this is not possible, but in
practice, approximate solutions are often good enough [17],
[29], [39]. The second assumption is that an error parameter
name matches the regular expression e|err|error iff it is part
of the error-first protocol. We base this assumption on our
empirical experience with many large JavaScript codebases.
We demonstrate that our method is correct under these as-
sumptions, and in our empirical evaluation (Section VII) we
show that these assumptions are reasonable in most cases.

Throughout, we use async to denote an asynchronous,
built-in, JavaScript API function, such as process.nextTick
or fs.readFile; we use cb to denote a callback, or a function
that is passed as an argument to other functions. For example,
Listing 6 gives an abstract example of function f that uses an

https://github.com/share/Share JS/issues/268
https://github.com/FredrikNoren/ungit/issues/603
https://github.com/grncdr/node-any- db/issues/66
https://github.com/addyosmani/psi/issues/56
https://github.com/meetfinch/decking/issues/18

Detection

Async function
definition detector

Async callsite
detector Wrap-around

Modify-original

Conversion Optimization

Flatten nested
promises

Input
code Promise creation Promise consumption

Callsite
conversion

Refactored
code

Error path
extraction

Fig. 1. Overview of our approach.

1 f unc t i on f (cbf) {
2 async(func t i on cbasync (error, data) {
3 i f (e r r o r) cbf (error , nu l l) ;
4 e l s e cbf (nu l l , data) ;
5 }) ;
6 }

8 f unc t i on cbf (e r ror , data) {
9 i f (e r r o r) {

10 // Handle e r r o r
11 }
12 e l s e {
13 // Handle data
14 }
15 }
16 f (cbf) ;

Listing 6. Abstract functions and callsites in the original program P .

asynchronous callback cbf ; the last line in the listing contains
a callsite to f .

Given a program P , we transform it into P ′ by transform-
ing sub-elements of P . Figure 1 illustrates this process. In
Section V-B we describe a process to automatically detect
instances of functions f in P that can be refactored using
our method. In Section V-C we describe a process to derive a
new asynchronous function f ′ that returns a promise from f .
In Section V-D we describe a process to derive succ and err,
the success and error handlers for the promise from cbf . In
Section V-E we review the process to derive the new call site
of f ′ from the original call site of f . Section V-F describes
an optimization to flatten nested promises.

B. Identifying asynchrony

Our automated refactoring first detects refactoring can-
didates by searching for functions that use asynchronous
callbacks. A function that uses an asynchronous callback is
characterized by the use of one of its parameters as the
callback argument of a known asynchronous function. The
parameter can be passed directly to the asynchronous function,
or indirectly by calling it inside the closure of another function.
For example, consider Listing 6. Our technique infers that f
is a refactoring candidate because cbf is indirectly used as
the callback argument of async, since it is called inside the
anonymous function cbasync.

More formally, we consider a function f to be a refactoring
candidate if async is directly invoked inside f ’s body and if
one of the following conditions is true:
(1) cbf = cbasync, or
(2) cbf is invoked inside the closure of cbasync

We look for instances of async using a whitelist of calls that
we know to be asynchronous. This whitelist includes a variety
of asynchronous APIs, including DOM events, network calls,
timers, and I/O. The complete list is available online [6].

C. Transforming the asynchronous function

In this subsection, we specify our transformations for de-
riving f ′ from f . We propose two strategies for transforming
identified instances of asynchronous callbacks into promises,
namely modify-original and wrap-around.

Strategy 1: Modify-original
In our exploratory study (Section IV), we observed the relative
frequency of different kinds of promise refactorings performed
by developers in practice. The modify-original strategy is
based on the most frequent pattern that we observed.

Preconditions. Candidate instances for the modify-original
refactoring to promises need to meet the following precondi-
tions. The rationale behind these preconditions is also provided
next to each item:
(1) cbf is invoked inside the scope of cbasync

As described earlier, cbf can be passed to the asyn-
chronous function either directly as a callback or indirectly
(inside another anonymous function called cbasync). We
currently support the indirect way of passing (cbf inside
cbasync). This is because we use the function body of
cbasync to detect the success path and error path. Thus
the precondition ensures that cbf 6= cbasync.

(2) cbf is not used in cbasync except as described by the
previous precondition
After the transformation, cbf will only be called after the
Promise is fulfilled or rejected. So if cbf is invoked in
other places in the function, the transformation to Promises
will cause inconsistencies. Therefore to ensure that f does
not use cbf for anything other than as a callback function
this precondition is needed.

(3) f always returns undefined
This condition checks that the function does not return
anything. We found that in most cases, when an asyn-
chronous function returns a value, the return value is
used as an identifier for synchronization. This precondition
eliminates cases where such an alternate synchronization
method is used. Custom synchronization strategies require
detailed knowledge of their implementation to produce a
valid refactoring and are therefore not handled by either
of our transformation strategies.

1 - f unc t i on addTrans lat ions (t r an s l a t i on s , c a l l){
2 t r a n s l a t i o n s = JSON. parse (t r a n s l a t i o n s) ;
3 f s . r e add i r (dirname + ' / . . / c l i e n t / s r c /

t r a n s l a t i o n s / ' ,
4 f unc t i on (err , p o f i l e s) {
5 i f (e r r) {
6 - r e turn ca l l ba ck (e r r) ;
7 }
8 var vars = [[]] ;
9 p o f i l e s . forEach (func t i on (f i l e) {

10 var l o c = f i l e . s l i c e (0 , -3) ;
11 i f ((f i l e . s l i c e (-3) === ' . po ') && (l o c !==

' template ')) {
12 vars . push ({ tag : loc , language :

t r a n s l a t i o n s [[l o c]] }) ;
13 }
14 }) ;
15 - r e turn ca l l ba ck (vars) ;
16 }) ;
17 }
18 - addTrans lat ions (trans , jobComplete) ;

Listing 7. An example of an asynchronous callback before refactoring to
promises – from KiwiIRC #581.

(4) cbf is splittable
This transformation requires a clearly identifiable success
path that will be invoked when the (synthesized) Promise
is fulfilled and also an error path to be invoked when this
Promise is rejected. Therefore this precondition ensures
that cbf has a success path and an error path that do not
interact with each other (i.e., that cbf is splittable). For
example, if cbf is using the error-first protocol, the error
parameter cannot be used on the success path and the data
parameter cannot be used on the error path. This is because
promises separate the success and error handlers, so any
interaction between the two paths cannot be supported by
a promises implementation.

(5) f has exactly one async
This is needed because only one promise will be returned
after the transformation and the handler for a promise can
only be invoked once. If more than one async is invoked,
a more complex refactoring is needed.

(6) invocations of cbf provide fewer than two arguments,
or follow the error-first protocol
This eliminates cases where more than one non-null
argument is given to cbf . This is a restriction of the
current specification and implementation of promises in
JavaScript, which only accepts one argument in both the
resolve and reject handlers8.

(7) f is not contained in a third-party library
This prevents library code from being refactored.

The limitation of modify-original is that it cannot transform
more complex asynchronous callbacks that do not meet one
or more of the above seven preconditions.

Transformation. PROMISESLAND implements the modify-
original strategy by directly modifying the body of f . Below
we work through an example of this strategy applied to

8Both Promise fulfillment and Promise rejection require only one resolution
value because the fulfillment is similar to the return value of a function while
the rejection of a Promise is similar to an exception thrown in a function,
both of which are single values.

1 + func t i on addTrans lat ions (t r a n s l a t i o n s){
2 + return new Promise (func t i on (r e so lv e , r e j e c t){
3 t r a n s l a t i o n s = JSON. parse (t r a n s l a t i o n s) ;
4 f s . r e add i r (dirname + ' / . . / c l i e n t / s r c /

t r a n s l a t i o n s / ' ,
5 f unc t i on (err , p o f i l e s) {
6 i f (e r r) {
7 + return r e j e c t (e r r) ;
8 }
9 var vars = [[]] ;

10 p o f i l e s . forEach (func t i on (f i l e) {
11 var l o c = f i l e . s l i c e (0 , -3) ;
12 i f ((f i l e . s l i c e (-3) === ' . po ') && (l o c

!== ' template ')) {
13 vars . push ({ tag : loc , language :

t r a n s l a t i o n s [[l o c]] }) ;
14 }
15 }) ;
16 + return r e s o l v e (vars) ;
17 }) ;
18 + }) ;
19 }
20 + addTrans lat ions (t rans) . then (jobComplete) ;

Listing 8. An example of an asynchronous callback after refactoring to
promises using Modify-original strategy.

function f in Listing 6. This function contains just a single
async call (to satisfy precondition (5) above). The modify-
original strategy extends naturally to versions of the code
where the async call is surrounded by arbitrary synchronous
code. The first step in modify-original is to create a new f ′

that returns a promise:
1 f unc t i on f ′ () {
2 re turn new Promise () ;
3 }) ;

The Promise constructor takes one argument, namely the
factory function for the promise. To build this, we declare
cb′async, an anonymous function that wraps the body of f :

1 f unc t i on f ′ () {
2 re turn new Promise (func t i on (r e so lve , r e j e c t){
3 async(func t i on cb′async (error ,data) {
4 i f (e r r o r) cbf (error , nu l l) ;
5 e l s e cbf (nu l l , data) ;
6 }) ;
7 }) ;
8 }

Next, we replace invocations of cbf with invocations of
resolve and reject. Invocations of cbf that pass a non-null
error argument are converted into invocations of reject. We
look for arguments that use the error-first protocol or match
the regular expression e|err|error to find these invocations.
All other invocations of cbf are converted into invocations of
resolve, which calls succ.

1 f unc t i on f ′ () {
2 re turn new Promise (func t i on (r e so lv e , r e j e c t){
3 async(func t i on cb′async (error ,data) {
4 i f (e r r o r) r e j e c t (error , nu l l) ;
5 e l s e r e s o l v e (nul l , data) ;
6 }) ;
7 }

Finally, in P ′ (the refactored program) we replace f with f ′.
Listings 7 and 8 depict an asynchronous callback instance in

a real-world JavaScript program, before and after it is refac-
tored to promises by our modify-original technique, respec-
tively. The refactored version of the function addTranslations

https://github.com/prawnsalad/KiwiIRC/pull/581

(Listing 8) does not accept a callback, and instead returns a
promise. The original invocations of the callback (lines 6 and
15 in Listing 7) have been changed to reject and resolve (lines
7 and 16 in Listing 8) depending on whether an error occurred
or not.

Strategy 2: Wrap-around
Because the modify-original strategy cannot transform asyn-
chronous callbacks that do not satisfy one or more of the
above preconditions, we also provide a strategy which (unlike
modify-original) does not modify the body of f . This strategy
is able to refactor a larger number of asynchronous callback
functions than modify-original, but it produces more code by
introducing a new function.
Preconditions. Candidates for the wrap-around refactoring
must satisfy the following preconditions:
(1) (cbf = cbasync) ∨ cbf is invoked inside the closure of

cbasync
(2) cbf is not used in f except as described by the previous

precondition
(3) f always returns undefined
(4) cbf is splittable
(5) f has exactly one async
(6) invocations of cbf provide fewer than two arguments, or

follow the error first protocol
(7) f cannot be refactored by modify-original

Precondition (1) is the same as our precondition for iden-
tifying instances of f in Section V-B. Preconditions (2-6) are
the same as the modify-original preconditions. Precondition
(7) ensures that the modify-original strategy is selected first,
because it produces more understandable code.

The preconditions for the wrap-around strategy are more
relaxed than the preconditions for the modify-original strategy.
This means that the wrap-around strategy can refactor more
instances of asynchronous callback usage.
Transformation. In this strategy, we do not modify f . Instead,
we wrap all of the calls to f inside a new function. We create
this new function f ′, which creates and returns a Promise. A
call to f is inserted into the body of the factory method for
the promise:

1 f unc t i on f ′ () {
2 re turn new Promise (func t i on (r e so lve , r e j e c t) {
3 f () ;
4 }) ;
5 }

7 f unc t i on f (cbf) {
8 async(func t i on cbasync (error, data) {
9 i f (e r r o r) cbf (error , nu l l) ;

10 e l s e cbf (nu l l , data) ;
11 }) ;
12 }

A new anonymous function is created as the continuation
function for f . If cbf follows the error-first protocol, the
continuation function provides branches that direct the error
parameter to reject and the data parameter to resolve:

1 f unc t i on f ′ () {
2 re turn new Promise (func t i on (r e so lve , r e j e c t) {
3 f (func t i on (err , data){
4 i f (e r r) re turn r e j e c t (e r r) ;
5 r e s o l v e (data) ;
6 }) ;
7 }) ;
8 }

10 f unc t i on f (cbf) {
11 async(func t i on cbasync (error, data) {
12 i f (e r r o r) cbf (error , nu l l) ;
13 e l s e cbf (nu l l , data) ;
14 }) ;
15 }

D. Transforming the callback function

By applying one of the two strategies, modify-original or
wrap-around, we now have a new asynchronous function f ′

that returns a promise. We next transform all call sites of f to
use the promise produced by f ′. The first step is to identify call
sites of f in the program. We rely on existing static analysis of
TernJS [24], a type inference technique based on the work by
Hackett and Guo [22] to determine the points-to relationships
between call sites of f and the declaration of f .

Next, we convert all call sites to use f ′. Consider c, a
call site of f . The call site c has a callback function cbf ,
which handles both successful and unsuccessful executions of
f . However, f ′ requires a separate handler for successful and
unsuccessful executions. From cbf we derive two functions:
the success handler succ and the error handler err. succ is the
success-handling path of cbf , while err is the error-handling
path of cbf . We therefore declare a success handler and an
error handler for the promise. The code that is executed along
the success path in cbf is copied into succ, while all the code
that is executed along the error path in cbf is copied into err.
Any conditional statements that cause control flow to branch to
the success or error paths in cbf are omitted from the handlers.

To determine the success path and error path of cbf , we use
a heuristic; we look for a conditional statement (e.g., an if)
that checks if a parameter matching e|err|error is non-null.
We consider the branch where the parameter is null to be the
success path, and consider the branch where the parameter is
non-null to be the error path. This is based on the typical usage
of the error-first protocol. Finally, in P ′ we replace cbf with
succ and err. This is a simple heuristic, but we find that it is
effective in practice (Section VII).

E. Transforming the call site

The last step in the refactoring process is to transform
the call sites of f to invoke f ′ instead. First, if the wrap-
around strategy was used, the name of f is changed to f ′.
If the modify-original strategy was used, the name remains
unchanged.

Next, since f ′ no longer accepts a continuation function,
the tool removes the cbf argument. As the call to f ′ now
produces a promise, it instead passes succ and err to this
promise: f ′().then(succ, err);

In some cases, no err exists. Either because there was no
error handling path in cbf or one was not recognized by our

heuristics. In this case, in place of err, we insert a comment
which recommends to the developer to create an error handler.

F. Flattening promise consumers

After a set of nested callbacks are converted into promises,
the result is a set of nested promise consumers. Because
[Promise].then also returns a Promise, we can improve
readability by converting nested promises to a flat sequence
of chained promises that are semantically equivalent. For
example, Listing 9 has a set of nested promises that can be
refactored to the chain of promises in Listing 10

1 getLocationDataNew (' jackson ') . then (func t i on (
d e t a i l s) {

2 getLongLatNew (d e t a i l s . address , d e t a i l s . country) .
then (func t i on (longLat) {

3 getNearbyATMsNew(longLat) . then (func t i on (atms) {
4 conso l e . l og ('Your nea r e s t ATM i s : ' + atms[0])

;
5 }) ;
6 }) ;
7 }) ;

Listing 9. Nested promises.

1 getLocationDataNew (' jackson ') . then (func t i on (
d e t a i l s) {

2 re turn getLongLatNew (d e t a i l s . address , d e t a i l s .
country) ;

3 }) . then (func t i on (longLat) {
4 re turn getNearbyATMsNew(longLat) ;
5 }) . then (func t i on (atms) {
6 re turn conso l e . l og ('Your nea r e s t atm i s : ' + atms

[0]) ;
7 }) ;

Listing 10. Chained promises after they are flattened.

We have two preconditions for flattening promise con-
sumers:
(1) ∀ variables v declared in succ, v is not used inside a

closure of succ
(2) only one nested promise is consumed inside succ

The first condition checks that no variable declared in succ
is also used in one of the asynchronous handlers declared
in succ. This condition is necessary because if we add the
handler for the nested promise through a promise chain, then
v, which is declared in succ will no longer be available to the
nested promise’s handler through closure. This is illustrated in
Listing 11. We cannot flatten these nested promises because
the parameter details is used by the success handler of
getNearbyATMsNew.

The second condition checks that there is just one asyn-
chronous call inside of succ since promise chaining does not
support executing multiple asynchronous functions in parallel.

If the two preconditions are met, to flatten a promise
chain we perform two transformations. First, each handler is
modified to return a promise. Second, for each handler that is
not at the start of the chain, a new call to [Promise].then is
created after the previous handler is registered. The handler is
passed to the previous promise in the chain.

1 getLocationDataNew (' jackson ') . then (func t i on (
d e t a i l s) {

2 getLongLatNew (d e t a i l s . address , d e t a i l s . country
) . then (func t i on (longLat) {

3 re tunr getNearbyATMsNew(longLat) . then (
func t i on (atms) {

4 conso l e . l og ('The c l o s e s t ATM to ' +
d e t a i l s . address + ' i s : ' + atms[0]) ;

5 }) ;
6 }) ;
7 }) ;

Listing 11. Nested promises which cannot be flattened

VI. IMPLEMENTATION

We have implemented our approach in a tool called
PROMISESLAND. It supports both native promises, as well as
a third party library implementation of promises called Blue-
bird [10]. PROMISESLAND is composed of two components:
a static analyzer to search for refactoring opportunities, and a
transformation engine to refactor the detected opportunities
into promises. PROMISESLAND builds on prior JavaScript
analysis tools, such as Esprima [25] to parse and build an AST,
Estraverse [41] to traverse the AST, and Escope [3] for scope
analysis. We also use TernJS [24], a type inference technique
based on the work by Hackett and Guo [22], to query for
function type arguments. As noted in Section V, TernJS is
unsound, but is a good enough approximation for our purpose.

VII. EVALUATION

The goal of our evaluation is to determine the efficacy of our
approach. Specifically, we address the following three research
questions:

RQ1: Can PROMISESLAND accurately identify instances
of asynchronous callbacks to be converted?

We consider PROMISESLAND as an automated technique
that a developer can use to first identify refactoring opportuni-
ties in the code. Therefore, we asses how accurately PROMIS-
ESLAND can find asynchronous callbacks in JavaScript code.

RQ2: Can PROMISESLAND correctly refactor
asynchronous callbacks to promises?

A key factor determining adoption of a refactoring tool is
confidence in its correctness [38]. We consider a refactoring
correct if it preserves the program’s behaviour after the trans-
formation.

RQ3: Is PROMISESLAND efficient?
Refactoring tools that are slow face adoption challenges [32]

in practice. We evaluate the efficiency of PROMISESLAND in
detecting and transforming asynchronous callbacks.

We have made PROMISESLAND open source and all of our
empirical data and results are available for download [4], [6].

A. Detection accuracy (RQ1)

To find out whether PROMISESLAND can accurately iden-
tify refactoring candidates in the form of asynchronous call-
backs, we first manually inspect four subject systems (see
Table I) to discover all asynchronous callbacks that can be
converted to promises. This set of subject systems consists

TABLE I
DETECTION ACCURACY OF THE TOOL.

Subject LOC Detected Refactored Precision Recall
System (JS) Instances Instances (%) (%)
heroku-bouncer 947 7 6 100 85.7
moonridge 3,760 19 14 100 73.6
timbits 1,226 17 15 100 88.2
tingo-rest 238 4 4 100 100
Total 6,171 47 39 (avg) 100 (avg) 82.9

of heroku-bouncer,9 a server-side middleware; moonridge,10

an isomorphic library for MongoDB; timbits,11 a client-side
widget framework; and tingo-rest,12 a REST-API wrapper for
TingoDB. Because the manual inspection is time consuming,
we included four systems. We believe these four are repre-
sentative as they include server-side code, client-side code as
well as isomorphic JavaScript that is executed both on the
client-side and on the server-side.

We then use PROMISESLAND to find refactoring candidates
to measure recall. We define recall as the percentage of
asynchronous callbacks that PROMISESLAND detects, across
all asynchronous callbacks that exist in the subject system.

Table I presents our results. The recall was 83% on average.
PROMISESLAND missed 8/47 asynchronous callbacks. The
reason is that our design is based on the premise that only
if it can be guaranteed that all paths of a function execute
the callback asynchronously, the callback can be considered
to be semantically similar to a promise (and thus it becomes a
refactoring candidate). To statically ensure that the callback
is executed asynchronously and exactly once, we follow a
conservative approach that can miss some of the potential
candidates for conversion. This means that in practice, al-
though PROMISESLAND detects and transforms most of the
candidates, a few can be missed. We believe this can be
improved further by using more advanced data-flow analysis
techniques.

PROMISESLAND did not report any candidates that it could
not correctly refactor. This is shown as 100% precision in
Table I.

B. Refactoring correctness (RQ2)

In prior research, Brodu et al. [12] proposed a compiler-
based technique to convert nested callbacks into a simpler
specification of promises called Dues [11]. To evaluate
PROMISESLAND, we select the subject systems used by Brodu
et al. and compare our results to theirs. This set of subject
systems consist of 64 Node.js modules and is expected to
be representative of a majority of commonly used JavaScript
modules. We measure how many asynchronous callback in-
stances can be detected and converted to promises without
leading to failures of the existing test cases of the subject
systems.

9 https://github.com/heroku/node-heroku-bouncer
10 https://github.com/capaj/Moonridge
11 https://github.com/postmedia/timbits
12 https://github.com/lean-stack/node.tingo-rest

 0

 5

 10

 15

 20

 25

express-user-couchdb

express-endpoint

gifsockets-server

heroku-bouncer

moonridge

redis-key-overview

slack-integrator

timbits
tingo-rest

brokowski

express-device

flair-doc

http-test-servers

jellyjs-plugin-httpserver

moby
monami

oauth-express

public-server

scrapit

sonea
squirrel-server

As
yn

ch
ro

no
us

 c
al

lb
ac

ks
 c

on
ve

rte
d Dues

PromisesLand

Fig. 2. Number of asynchronous callbacks converted into Dues by using the
tool from [12]; and, the number of asynchronous callbacks converted into
promises with PROMISESLAND.

We run PROMISESLAND on the 64 modules, which analyzes
438 JavaScript files and 108,615 lines of JavaScript code,
to discover instances of asynchronous callbacks. From this
list of asynchronous callbacks, we select those from projects
with non-failing tests and those with at least one test case
that executes them. There are 188 asynchronous callbacks
from 21 subject systems that match these two criteria. This
selection allows us to verify that behaviour is preserved after
the refactoring step. We use test cases for this purpose because
prior research [20] has shown that test cases are effective at
providing an estimate of how reliable refactoring engines are
for refactoring tasks on real software projects.

Next, refactoring is performed on the 188 asynchronous
callbacks with PROMISESLAND. After PROMISESLAND refac-
tors each asynchronous callback to a promise, we run the mod-
ule’s test suite to check if the original behaviour is preserved.
For each refactoring that PROMISESLAND performed, the test
suite passed successfully.

Figure 2 compares the results of our evaluation of PROMIS-
ESLAND against the technique proposed by Brodu et al. [12]
(indicated as Dues). Across all subject systems, PROMIS-
ESLAND correctly transforms more asynchronous callbacks
than the Dues transpiler. In total, the Dues transpiler converts
56 instances, while PROMISESLAND converts 188 instances
(including those 56).

Out of the 188 converted instances, 73 are converted using
the modify-original strategy; as it was the first strategy we
attempted. The remaining 115 instances were converted using
the wrap-around strategy. When detecting compatible contin-
uations for refactoring, the Dues compiler restricted itself to
choosing error-first callbacks only. However, PROMISESLAND
does not have this constraint and determines the suitability
for conversion by analyzing the body of the function itself.
Therefore, our approach can select a larger set of asyn-
chronous callbacks for safe conversion. Overall, we found that
PROMISESLAND is able to refactor 235% more asynchronous
callbacks than the tool proposed in [12].

These results show not only the ability of PROMISESLAND
in detecting asynchronous callbacks, but also its correctness
in transforming those callbacks into promises.

https://github.com/heroku/node-heroku-bouncer
https://github.com/capaj/Moonridge
https://github.com/postmedia/timbits
https://github.com/lean-stack/node.tingo-rest

TABLE II
RUNNING TIME OF PROMISESLAND IN SECONDS PER PROGRAM.

Phase Min Max Mean Median
Async function detection 0.118 0.997 0.510 0.503
Promise creation conversion 0.102 0.495 0.293 0.289
Promise consumption conversion 0.114 0.468 0.273 0.292
Optimization and re-writing 0.138 0.951 0.610 0.584
All phases 0.969 2.569 1.686 1.645

C. Performance (RQ3)

Since refactoring tools are typically used in a development
environment, refactoring must be completed quickly to not
keep the developer waiting.

Table II shows the running time statistics for PROMIS-
ESLAND to complete each phase of the refactoring for a
single program (from Figure 2) in seconds. The measurements
were taken on a typical Linux system, containing Dual-core
2.16 GHz CPU and 4GB of RAM. In all cases the complete
program refactoring finished in under 3 seconds. The last row
of Table II shows the time taken for the complete refactoring
process end-to-end. Since the migration from asynchronous
callbacks to promises will be a one-time task in software
maintenance, we believe the time taken by our technique is
acceptable.

VIII. DISCUSSION

Wrap-around produces more complex code. It may be
counter-intuitive that a refactoring strategy that produces more
complex code, such as our wrap-around strategy, is useful. The
benefits of this strategy are centered around the fact that this
strategy does not modify the original function containing the
asynchronous callback invocation. This is useful when:
• The function is in a library that cannot or should not be

modified.
• The function has other clients that cannot be refactored.
• The function is too complex to refactor with other means

(e.g., if it uses eval or other JS constructs that make the
code difficult or impossible to analyze statically).

Evaluating PROMISESLAND. We evaluated the correctness
of PROMISESLAND by running an application’s tests after its
code was refactored using the tool. This is a sanity check that
the PROMISESLAND maintains program correctness. A more
rigorous evaluation would require more formal techniques and
is part of our future work.

Evaluating promises. Although at least some developers
prefer promises over asynchronous callbacks, we do not know
of any research that considers whether the use of promises
improves JavaScript code quality. Our work contributes two
refactoring techniques and a tool, PROMISESLAND, that im-
plements these techniques. In our evaluation, we focus on
features of the tool, such as its precision and recall. Empirical
evaluation of the promises language feature itself and its
implications for software quality and developer productivity
remains an open problem.

IDE integration. By default PROMISESLAND refactors all
asynchronous callbacks that it finds in the source code of an
application, though it can be also run on a single source file.
We believe PROMISESLAND can be integrated into common
JavaScript IDEs to make it more easily accessible to develop-
ers, which forms part of our future work.
Backward Compatibility. Although all major JavaScript run-
times support promises, lack of backward-compatibility was
a concern that we observed in discussions that we studied
(Section IV). For example, one developer noted that “[I] too
believe promises are the future, but it seems that you need to
make the users aware of what promise library they should use
or native browser promises if supported.”13 In other words,
refactoring a library to use promises requires all clients of the
library to change their code.
Async and await. Promises were initially specified in the
ECMAScript6 specification. ECMAScript8 [5], which was
released in June 2017, provides a new option for handling
asynchrony in the form of the async and await keywords.
These allow a linear programming style and permit traditional
try/catch error handling, which is arguably more understand-
able than promises. However, our perspective is that, regardless
of the underlying mechanism for managing asynchrony, the
need for detecting and refactoring asynchronous callbacks
will remain. The mechanisms described in this paper and
implemented as part of PROMISESLAND are a step towards
more powerful techniques. For example, Promises explicitly
encode success and failure paths, which are implicit in the
error-first protocol and are detected by our tool. With the
techniques developed in this paper, when ECMAScript8 is
widely adopted, we will be one step closer to automating the
refactoring of JavaScript code to use async and await.

IX. CONCLUSION

It is difficult to imagine a useful JavaScript application
that does not use asynchronous callbacks; these are used
by applications to respond to GUI events, receive network
messages, schedule timers, etc. Unfortunately, asynchronous
callbacks present a number of software engineering challenges,
including inability to properly catch and handle errors and
callback nesting, which leads developers into “callback hell.”

In this paper we presented two refactorings, modify-original
and wrap-around, to refactor asynchronous callbacks into
promises, a JavaScript language feature that resolves some
of the issues with asynchronous callback. We implemented
both refactorings as part of the PROMISESLAND tool and
evaluated it on 21 large JavaScript applications. We found that
PROMISESLAND correctly refactors asynchronous callbacks to
promises, refactors 235% more callbacks than a tool from prior
work, and runs in under three seconds on all of our evaluation
targets.

PROMISESLAND is an open source tool. We made the
tool and all of our empirical data and results available for
download [4], [6].

13 https://github.com/fixjs/define.js/issues/7

https://github.com/fixjs/define.js/issues/7

REFERENCES

[1] Can I use Promises?, 2017. http://caniuse.com/#feat=promises.
[2] The ECMAScript language specification, 2017. https://www.ecma-

international.org/ecma-262/7.0/#sec-promise-objects.
[3] Escope, 2017. https://github.com/estools/escope.
[4] Motivation for moving to Promises. https://github.com/saltlab/

PromisesLand/wiki/Motivation-for-moving-to-Promises, 2017.
[5] Status, process, and documents for ECMA262, 2017. https://www.ecma-

international.org/ecma-262/8.0/#sec-async-function-objects.
[6] To the Promises Land: Refactoring Asynchrony in JavaScript. http:

//salt.ece.ubc.ca/software/promisland, 2017.
[7] S. Alimadadi, A. Mesbah, and K. Pattabiraman. Hybrid DOM-sensitive

change impact analysis for JavaScript. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP), pages 321–
345, 2015.

[8] S. Alimadadi, S. Sequeira, A. Mesbah, and K. Pattabiraman. Under-
standing JavaScript event-based interactions. In Proceedings of the
International Conference on Software Engineering (ICSE), pages 367–
377. ACM, 2014.

[9] E. Andreasen and A. Møller. Determinacy in static analysis for jQuery.
In Proc. ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), October 2014.

[10] Bluebird. Promise.promisify. http://bluebirdjs.com/docs/api/promise.
promisify.html, 2017.

[11] E. Brodu. Due, 2017. https://github.com/etnbrd/due.
[12] E. Brodu, S. Frénot, and F. Oblé. Toward Automatic Update from

Callbacks to Promises. In Proceedings of the 1st Workshop on All-Web
Real-Time Systems, AWeS ’15, pages 1:1–1:8, New York, NY, USA,
2015. ACM.

[13] B. Cavalier. Async programming part 2: Promises. 2013. http://blog.
briancavalier.com/async-programming-part-2-promises/.

[14] D. Dig. Refactoring for asynchronous execution on mobile devices.
IEEE Software, 32(6):52–61, 2015.

[15] A. Feldthaus, T. Millstein, A. Møller, M. Schäfer, and F. Tip. Tool-
supported refactoring for JavaScript. In Proceedings of the ACM
International Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’11, pages 119–138, New York,
NY, USA, 2011. ACM.

[16] A. Feldthaus and A. Møller. Semi-automatic rename refactoring for
JavaScript. In Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applications,
OOPSLA ’13, pages 323–338. ACM, 2013.

[17] A. Feldthaus, M. Schäfer, M. Sridharan, J. Dolby, and F. Tip. Efficient
construction of approximate call graphs for JavaScript IDE services.
In Proceedings of International Conference on Software Engineering
(ICSE), pages 752–761. IEEE, 2013.

[18] K. Finley. Github has surpassed sourceforge and google code in
popularity. 2011. http://readwrite.com/2011/06/02/github-has-passed-
sourceforge.

[19] K. Gallaba, A. Mesbah, and I. Beschastnikh. Don’t Call Us, We’ll
Call You: Characterizing Callbacks in JavaScript. In Proceedings of the
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), pages 247–256. IEEE Computer Society,
2015.

[20] M. Gligoric, F. Behrang, Y. Li, J. Overbey, M. Hafiz, and D. Marinov.
Systematic testing of refactoring engines on real software projects. In
G. Castagna, editor, ECOOP 2013 – Object-Oriented Programming,
volume 7920 of Lecture Notes in Computer Science, pages 629–653.
Springer Berlin Heidelberg, 2013.

[21] L. Gong, M. Pradel, M. Sridharan, and K. Sen. Dlint: Dynamically
checking bad coding practices in JavaScript. In Proceedings of the
International Symposium on Software Testing and Analysis, ISSTA 2015,
pages 94–105. ACM, 2015.

[22] B. Hackett and S.-y. Guo. Fast and precise hybrid type inference for
JavaScript. In Proceedings of the Conference on Programming Language
Design and Implementation (PLDI), pages 239–250. ACM, 2012.

[23] Q. Hanam, F. Brito, and A. Mesbah. Discovering bug patterns in
JavaScript. In Proceedings of the ACM SIGSOFT International Sym-
posium on the Foundations of Software Engineering (FSE), page 13
pages. ACM, 2016.

[24] M. Haverbeke. Tern, 2017. https://github.com/marijnh/tern.
[25] A. Hidayat. Esprima, 2017. https://github.com/jquery/esprima.
[26] S. H. Jensen, P. A. Jonsson, and A. Møller. Remedying the eval that

men do. In Proceedings of the International Symposium on Software
Testing and Analysis, ISSTA, pages 34–44. ACM, 2012.

[27] V. Kashyap, K. Dewey, E. A. Kuefner, J. Wagner, K. Gibbons, J. Sarra-
cino, B. Wiedermann, and B. Hardekopf. JSAI: A static analysis plat-
form for JavaScript. In Proceedings of the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2014, pages
121–132. ACM, 2014.

[28] Y. Lin, S. Okur, and D. Dig. Study and refactoring of android asyn-
chronous programming. In Proceedings of the International Conference
on Automated Software Engineering, ASE, pages 224–235, 2015.

[29] M. Madsen, F. Tip, and O. Lhoták. Static analysis of event-driven
node.js JavaScript applications. In Proc. ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), 2015.

[30] F. Meawad, G. Richards, F. Morandat, and J. Vitek. Eval begone!: semi-
automated removal of eval from JavaScript programs. In Proceedings of
the International Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA), pages 607–620. ACM, 2012.

[31] A. Milani Fard and A. Mesbah. JSNose: Detecting JavaScript code
smells. In Proceedings of the International Working Conference on-
Source Code Analysis and Manipulation (SCAM), pages 116–125, 2013.

[32] E. Murphy-Hill and A. Black. Breaking the barriers to successful
refactoring. In Software Engineering, 2008. ICSE ’08. ACM/IEEE 30th
International Conference on, pages 421–430, May 2008.

[33] H. V. Nguyen, C. Kästner, and T. N. Nguyen. Building call graphs for
embedded client-side code in dynamic web applications. In Proceedings
of the ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2014, pages 518–529. ACM, 2014.

[34] F. Ocariza, K. Pattabiraman, and A. Mesbah. Detecting inconsistencies
in JavaScript MVC applications. In Proceedings of the ACM/IEEE
International Conference on Software Engineering (ICSE), pages 325–
335. ACM, 2015.

[35] M. Ogden. Callback hell, 2015. http://callbackhell.com.
[36] S. Rostami, L. Eshkevari, D. Mazinanian, and N. Tsantalis. Detecting

Function Constructors in JavaScript. In International Conference on
Software Maintenance and Evolution, ICSME, 2016.

[37] L. H. Silva, M. T. Valente, and A. Bergel. Refactoring Legacy JavaScript
Code to Use Classes: The Good, The Bad, and The Ugly. In Proceedings
of the International Conference on Software Reuse, ICSR, 2017.

[38] G. Soares, R. Gheyi, D. Serey, and T. Massoni. Making program
refactoring safer. Software, IEEE, 27(4):52–57, 2010.

[39] M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and F. Tip. Correlation
tracking for points-to analysis of JavaScript. In Proceedings of European
Conference on Object-Oriented Programming (ECOOP), pages 435–
458. Springer, 2012.

[40] Stack Overflow. 2017 Developer Survey. http://http://stackoverflow.com/
insights/survey/2017/, 2017.

[41] Y. Suzuki. Estraverse, 2017. https://github.com/estools/estraverse.
[42] TypeScript. Typescript, 2015. http://www.typescriptlang.org.
[43] R. von Behren, J. Condit, and E. Brewer. Why Events Are a Bad

Idea (for High-concurrency Servers). In Conference on Hot Topics in
Operating Systems, HOTOS, 2003.

[44] S. Wei and B. G. Ryder. State-sensitive points-to analysis for the
dynamic behavior of JavaScript objects. In Proceedings of European
Conference on Object-Oriented Programming (ECOOP), pages 1–26.
Springer, 2014.

http://caniuse.com/#feat=promises
https://www.ecma-international.org/ecma-262/7.0/#sec-promise-objects
https://www.ecma-international.org/ecma-262/7.0/#sec-promise-objects
https://github.com/estools/escope
https://github.com/saltlab/PromisesLand/wiki/Motivation-for-moving-to-Promises
https://github.com/saltlab/PromisesLand/wiki/Motivation-for-moving-to-Promises
https://www.ecma-international.org/ecma-262/8.0/#sec-async-function-objects
https://www.ecma-international.org/ecma-262/8.0/#sec-async-function-objects
http://salt.ece.ubc.ca/software/promisland
http://salt.ece.ubc.ca/software/promisland
http://bluebirdjs.com/docs/api/promise.promisify.html
http://bluebirdjs.com/docs/api/promise.promisify.html
https://github.com/etnbrd/due
http://blog.briancavalier.com/async-programming-part-2-promises/
http://blog.briancavalier.com/async-programming-part-2-promises/
http://readwrite.com/2011/06/02/github-has-passed-sourceforge
http://readwrite.com/2011/06/02/github-has-passed-sourceforge
https://github.com/marijnh/tern
https://github.com/jquery/esprima
http://callbackhell.com
http://http://stackoverflow.com/insights/survey/2017/
http://http://stackoverflow.com/insights/survey/2017/
https://github.com/estools/estraverse
http://www.typescriptlang.org

