
Revisiting “Programmers’ Build Errors”
in the Visual Studio Context

A Replication Study using IDE Interaction Traces

Noam Rabbani
McGill University, Canada

nawras.rabbani@mail.mcgill.ca

Michael S. Harvey
McGill University, Canada

michael.harvey@mail.mcgill.ca

Sadnan Saquif
McGill University, Canada

sadnan.saquif@mail.mcgill.ca

Keheliya Gallaba
McGill University, Canada

keheliya.gallaba@mail.mcgill.ca

Shane McIntosh
McGill University, Canada
shane.mcintosh@mcgill.ca

ABSTRACT

Build systems translate sources into deliverables. Developers exe-

cute builds on a regular basis in order to integrate their personal

code changes into testable deliverables. Prior studies have evaluated

the rate at which builds in large organizations fail. A recent study

at Google has analyzed (among other things) the rate at which

builds in developer workspaces fail. In this paper, we replicate the

Google study in the Visual Studio context of the MSR challenge. We

extract and analyze 13,300 build events, observing that builds are

failing 67%ś76% less frequently and are ixed 46%ś78% faster in our

study context. Our results suggest that build failure rates are highly

sensitive to contextual factors. Given the large number of factors

by which our study contexts difer (e.g., system size, team size, IDE

tooling, programming languages), it is not possible to trace the

root cause for the large diferences in our results. Additional data

is needed to arrive at more complete conclusions.

ACM Reference Format:

NoamRabbani,Michael S. Harvey, Sadnan Saquif, Keheliya Gallaba, and Shane

McIntosh. 2018. Revisiting łProgrammers’ Build Errorsž in the Visual Stu-

dio Context: A Replication Study using IDE Interaction Traces. In MSR

’18: 15th International Conference on Mining Software Repositories , May 28ś

29, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 4 pages. https:

//doi.org/10.1145/3196398.3196469

1 INTRODUCTION

The build system is a software development tool, which automates

the process by which sources are compiled, linked, tested, packaged,

and otherwise transformed into deliverables. The build system can

incorporate several interacting technologies, e.g., makeiles, data

loading scripts, dependency trackers, compilers, and debuggers.

Modern Integrated Development Environments (IDEs) interface with

build systems so that it can be executed to check the correctness of

code changes as they are being produced.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from permissions@acm.org.

MSR ’18, May 28ś29, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5716-6/18/05. . . $15.00
https://doi.org/10.1145/3196398.3196469

Executing the build process (i.e., building) is at the heart of the

development process. Indeed, since the 1970’s, building has been a

crucial stage in the four-step development process, where a devel-

oper must think of a solution, edit the codebase to implement the

solution, build the codebase to propagate their changes to system

deliverables, and test the newly created deliverables to ensure that

the change had the desired efect [2]. Without at least one success-

ful build, it is unlikely that a software project would yield a useful

application that can be distributed to end users.

While ideally builds should be successful, they may also fail.

These build failures help developers to identify problems in software

systems early in the development process. For example, compiler

warnings and test failures help to identify mistakes and faults in the

codebase before they impact end users. On the other hand, build

failures may also be a distraction, requiring developers to address

these problems immediately in order to continue their work.

Previous studies have quantiied the frequency and impact of

team-level build failures. For example, Vassallo et al. [8] report a

build failure rate of 26% at the ING inancial organization. Rausch

et al. [5] observe build failure rates of 14%ś69% in 14 open source

Java systems. Kerzazi et al. [3] estimate that between 893ś2,133

hours are wasted due to the ixing efort that was needed to repair

build failures in a large industrial system.

Recently, Seo et al. [6] were able to analyze build failures in

C++ and Java developer workspaces at Google. These workspaces

included Eclipse and IntelliJ for Java and ViM and Emacs for C++.

In this study, builds were processed by a centralized build system.

To expand the scope of Seo et al.’s observations, we replicate

their study in the Visual Studio context of the Mining Software

Repositories (MSR) challenge. The build events in the MSR chal-

lenge dataset are of a similar granularity to those of the Google

context, since they were extracted from traces of developer interac-

tions with the IDE [4]. Builds in our context are assumed to have

occurred using a local compiler in contrast to Google’s centralized

system. More speciically, in this paper, we revisit the following

Research Questions (RQs):

• RQ1: How often do builds fail? We observe an overall

build failure rate of 13.2% and a median developer-speciic

failure rate of 9.2%, which is 67%ś76% lower than the failure

rates that were observed in the Google context.

• RQ2:How long does it take to ix a failing build? Failing

builds have a median resolution time of 2.7 minutes in our

https://doi.org/10.1145/3196398.3196469
https://doi.org/10.1145/3196398.3196469
https://doi.org/10.1145/3196398.3196469

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Rabbani et al.

study context, which is 46%ś78% lower than the median

resolution time of the study conducted at Google.

These results suggest that build failure rates are highly sensitive

to changes in context. There are several notable diferences between

the MSR challenge context and the Google development context

(e.g., system and team size, programming languages, IDEs, tooling).

Additional context data is needed to identify the degree to which

each of these contextual factors (and other potential confounding

factors) afect the build failure rate.

Paper Organization. The remainder of the paper is organized

as follows. Section 2 describes the design of our study, while Sec-

tion 3 presents the results. Finally, Section 4 draws conclusions and

proposes promising avenues for future work.

2 STUDY DESIGN

We structure our study of build failures by addressing two research

questions (RQs) (Section 2.1). To address our research questions, we

irst ilter and pre-process the MSR challenge dataset (Section 2.2)

and then analyze it (Section 2.3). Figure 1 provides an overview

of our study design while the text in the following subsections

describes each step. Our data and scripts are available online.1

2.1 Research Questions

We begin our study by aiming to replicate the three research ques-

tions of Seo et al. [6]. Unfortunately, the second research question

(łWhy do builds break?ž) could not be answered using theMSR chal-

lenge dataset as the reason for failing build events is not recorded

in the interaction traces. The MSR challenge dataset provides the

necessary data to address the following two research questions:

• RQ1: How often do builds fail? Data about the frequency

of failing builds will help us to understand the potential im-

pact of failing builds on a software organization. For example,

if builds fail frequently, steps to mitigate failing builds may

have a positive impact on a software organization.

• RQ2: How long does it take to ix a failing build? Data

about how long failing builds take to repair will deepen our

understanding of the impact of failing builds on a software

organization. For example, even if failing builds occur fre-

quently, if they are ixed quickly, their impact on a software

team may be acceptable.

2.2 Data Filtering

TheMSR challenge dataset [4] is rich and diverse. In this section, we

describe the steps taken to ilter and preprocess the MSR challenge

dataset to extract the necessary and suitable data for our study.

Below, we describe each step in our data iltering process.

DF0: Select All Build Events. An initial inspection of the event

types that are recorded in the MSR challenge dataset reveals that

events of type Build are the only events that we need to replicate

the study of Seo et al. [6]. Therefore, in our irst step, we extract

all of the build events from the MSR challenge dataset. For each

extracted event, we include the associated user and session IDs.

DF1: Select (Re)build Action Events. Build events in the dataset

have an action attribute, whose value is Clean, Deploy, Build, or

1https://dx.doi.org/10.6084/m9.igshare.5995447

RebuildAll. Clean actions restore the codebase to the state that it

was in before any build steps were performed, while Deploy actions

make the deliverables that were produced by a previous build event

available for customers to install or interact with [1]. These events

are not events that were tracked as builds in the Seo et al. study, so

we ilter them out of our dataset before performing our analysis.

Table 1 shows that Clean and Deploy actions are rare in the MSR

challenge dataset, only accounting for 272 of the 13,584 (2%) of the

total build events. After iltering Clean and Deploy actions, 13,312

build events remain in our dataset.

DF2: Screen Inactive Users. Developers who build infrequently

need to be removed from the dataset, since they are not represen-

tative of typical developers [6]. The approach of the study under

replication was to focus on only those developers who build at least

once per day. In our setting, this ilter is too aggressive, and would

remove 19% of users. Instead, we opt to ilter out the users whose

number of builds is below the ifth percentile, which in our dataset

is 5 builds. This ilter removes an additional 12 builds, yielding a

inal sample size of 13,300 builds.

2.3 Data Analysis

After extracting and iltering the MSR challenge dataset, the 13,300

build events that are suitable for our replication study need to

be analyzed. Figure 1 provides an overview of our data analysis

approach, which is comprised of ive steps. Below, we describe each

step in our approach.

DA0: Identify Failed Builds. The build events in the MSR chal-

lenge dataset were not logged with a success indicator. Instead, each

build is comprised of targets (stages), each of which may succeed

or fail. In our context, we deine a successful build as one where all

of its targets are successful. Conversely, if any target within a build

fails, we lag that build as failed.

DA1.1: Compute Failure Ratio. To address RQ1, we need to com-

pute the rate at which builds fail. Thus, we compute the total number

of failures and normalize it by the total number of builds. We use

this measure to analyze (1) the overall rate of build failures; and (2)

user-speciic and session-speciic rates of build failure.

DA2.1: Identify Build Sequences.More than one project may be

built during an IDE session. Therefore, even after grouping build

events by user and session, we must apply an additional step to

identify build sequences, i.e., builds of the same project within a

session. For each build event within a session, we extract the names

of the targets that were included in that build. We consider a series

of build events to be in a sequence if the names of their targets

match above a Target Similarity Threshold of t .

Higher t settings yield fewer build sequences with lower rates

of false positives, but may be susceptible to false negatives. On the

other hand, lower t settings yield more build sequences with lower

rates of false negatives, but may be susceptible to false positives.

Since this t setting may impact our results, we analyze the data

using four t settings, i.e., 70%, 80%, 90%, and 100%.

DA2.2: Identify Fail-Fix Pairs. To address RQ2, we need to iden-

tify pairs of builds within sequences where the earlier build in

the pair represents a build failure and the later build in the pair is

the irst successful build along the sequence after this failure (i.e.,

its ix). To identify these fail-ix pairs, we iterate over each build

https://dx.doi.org/10.6084/m9.figshare.5995447

Revisiting “Programmers’ Build Errors”
in the Visual Studio Context MSR ’18, May 28–29, 2018, Gothenburg, Sweden

Figure 1: An overview of our approach to replicate the study of Seo et al. [6] using the MSR challenge dataset.

sequence to ind a failing build that follows immediately after a

successful build. This is identiied as the failing build in the fail-ix

pair. We then continue along the build sequence, skipping each

additional failing build until we encounter a successful build. This

build is identiied as the ixing build in the fail-ix pair. This process

is repeated until the end of the sequence is reached, and is repeated

for each build sequence in the MSR challenge dataset.

DA2.3: ComputeResolutionTime. For each fail-ix pair, we com-

pute the resolution time using the deinition provided by Seo et

al. [6]. The resolution time is the elapsed time between the end

time of the failing build and the start time of the successful build in

the fail-ix pair. We do note that this deinition of resolution time

has limitations, e.g., one cannot know that the build has been ixed

until the successful build has inished. However, in order to draw

comparisons with the Seo et al. [6] study, we reuse this deinition

of resolution time.

Since each event in the MSR challenge dataset only contains

a starting time, we must compute the end time of failing builds

in fail-ix pairs. Fortunately, each build event has a duration at-

tribute. Therefore, the resolution time rt = tix− (tfail+dfail), where

tix and tfail are the starting times of the ixing and failing builds,

respectively, and dfail is the duration of the failed build.

The resolution time is susceptible to noise, since developers may

take breaks between the failing and ixing builds in a fail-ix pair.

As was done by Seo et al. [6], we mitigate the impact of extreme

cases by iltering out resolution times greater than 12 hours.

3 RESULTS

In this section, we present the results of our replication study with

respect to the two research questions.

RQ1: How often do builds fail?

Results. Builds in our context fail less often than those of

the Google context. In the original study, Seo et al. [6] observed

median failure rates of 38.4% among C++ developers and 28.5%

among Java developers at Google. The 9.9 percentage point dis-

crepancy between the medians was in part due to Java developers’

tendency to use IDEs (e.g., Eclipse, IntelliJ IDEA), while C++ devel-

opers tended to use text editors (e.g., ViM, Emacs). Text editors will

oload most error detection to the build process. Many of these

errors would typically be caught by an IDE.

Table 1 shows that, in our Visual Studio context, 1,758 of the

13,300 (13.2%) studied build events fail, which is 15.3 percentage

Table 1: Build action types and their failure frequency.

Action # Builds # Failing Builds % Failed Builds

Build 12,662 1,606 12.6%

RebuildAll 650 154 23.7%

Clean 263 2 0.8%

Deploy 9 4 44.4%

Total before ilter-

ing

13,584 1,766 13.0%

After iltering out

Clean and Deploy

actions

13,312 1,760 13.2%

After iltering out

inactive builders

13,300 1,758 13.2%

0

5

10

0 25 50 75 100
Failure Ratio (%)

 N
u

m
b

e
r

o
f

d
e
ve

lo
p

e
rs

Figure 2: The distribution of user-speciic build failure rates

in our dataset with bin size 30. The vertical line shows the

median value; 9.2%.

points lower than the median build failure rate among Java devel-

opers at Google. Moreover, Figure 2 shows the distribution of user-

speciic build failure rates in our context. Our median user-speciic

failure rate is 9.2%; 19.3 percentage points lower than the median

observed build failure rate among Java developers at Google.

The lower failure rates that we observe in the MSR challenge

context may be due to several factors. First, Visual Studio may

be detecting and suggesting ixes for a larger set of errors than

Eclipse and IntelliJ IDEA. Those ixes may be preventing errors

from becoming build failures. Second, lower failure rates may be

due to a diference in build complexity in the contexts. The builds

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Rabbani et al.

in the MSR dataset are likely to be less complex than the builds at

Google, which are notoriously large [7]. Indeed, one of the largest

builds in the replicated study was comprised of 2,858 build targets

and used six programming languages. By comparison, the largest

build in the MSR dataset has 350 targets. To better understand

how much each factor contributes to the discrepancy in failure

rate, project characteristic data is needed to track the context in

which the builds in the MSR challenge dataset were performed.

One user had a 100% failure rate. This user attempted 22 times to

build the same single target over eight hours. These build durations

ranged from 0.7 to 4.5 seconds. Although this user self-reported a

positive two comfort level with C# programming and positive one

comfort level with general programming (on scales from negative

three to positive three), their number of builds fell within the 25th

percentile and the number of days with builds logged fell in the

seventh percentile. Therefore, we take this user and their builds as

outliers.

Observation 1: Builds in the visual studio context of this study

fail less frequently than those from the Google context.

RQ2: How long does it take to ix a failing build?

Results. Builds in our context take less time to ix than those

of the Google context. Developers at Google spend a median of

ive and twelve minutes ixing C++ and Java build failures, respec-

tively [6]. Figure 3 shows the distribution of resolution time in the

MSR challenge dataset for target similarity thresholds of 70%, 80%,

90%, and 100% (recall Section 2.3).

Figure 3 shows that, when choosing the most conservative target

similarity threshold of 100%, build failures in the MSR challenge

dataset take a median of 2.7 minutes to ix. The thresholds of 70%,

80%, and 90% have respective medians of 2.6, 2.7, and 2.7 minutes.

Regardless of the target similarity threshold that is selected,

builds are generally ixed 46%ś78% quicker in the MSR challenge

dataset. Again, many factors may contribute to this discrepancy.

First, the diferences in work environments, languages, and tooling

may impact resolution time. Second, the less complex builds of the

MSR challenge dataset may also impact on resolution time. Similar

to RQ1, additional data about the context of the MSR challenge

builds is needed to better understand the impact that each factor

has on resolution time.

Observation 2: Builds in our dataset are ixed 46%ś78% quicker

than those from the Google context.

4 CONCLUSIONS

Software builds are a crucial part of the development process where

source code and all relevant artifacts are combined to produce

deliverables. Studies of failing builds yield insight about common

mistakes and suggests modiications for their prevention, avoidance,

and detection. While prior studies have been published describing

build failures in other settings, to the best of our knowledge, this

study is the irst to conduct such an empirical study in the context

of Visual Studio. By replicating two research questions of the Seo

et al. [6] study from the Google context, we make the following

observations:

0

25

50

75
100

1 10 100
Resolution Time (Minutes)

N
u

m
b

e
r

o
f
F

a
il−

F
ix

 P
a

ir
s

Target Similarity Thresholds 70% 80% 90% 100%

Figure 3: Resolution time of buildswith diferent Target Sim-

ilarity Thresholds. The vertical line shows themedian value

for 100% Target Similarity; 2.7 minutes.

• The median user-speciic failure rate is 9.2%, which is much

lower than the failure rates of 28.5ś38.4% that were observed

in the Google context.

• Failing builds take a median of 2.7 minutes to ix in our

context, whereas failures in the Google context take amedian

of ive to twelve minutes to ix.

These results lead us to conclude that build failure rates and

resolution times are highly dependent on the study context. Since

several contextual factors are in diferent between our study context

and the Google study (e.g., system size, team size, programming

languages, IDE tooling), it is not possible to pinpoint why we ob-

serve such a large diference in our results. Additional contextual

data (which is not available in the MSR challenge dataset) is needed

to perform a more detailed root cause analysis.

REFERENCES
[1] BramAdams and ShaneMcIntosh. 2016. Modern Release Engineering in a Nutshell:

Why Researchers should Care. In Proceedings of the International Conference on
Software Analysis, Evolution, and Reengineering (SANER). 78ś90.

[2] Stuart I. Feldman. 1979. MakeÐa program for maintaining computer programs.
Software: Practice and Experience 9, 4 (1979), 255ś265.

[3] Noureddine Kerzazi, Foutse Khomh, and Bram Adams. 2014. Why do Automated
Builds Break? An Empirical Study. In Proceedings of the International Conference
on Software Maintenance and Evolution (ICSME). 41ś50.

[4] Sebastian Proksch, Sven Amann, and Sarah Nadi. 2018. Enriched Event Streams: A
General Dataset for Empirical Studies on In-IDE Activities of Software Developers.
In Proceedings of the 15th Working Conference on Mining Software Repositories.

[5] Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan Schulte. 2017. An
Empirical Analysis of Build Failures in the Continuous Integration Worklows of
Java-Based Open-Source Software. In Proceedings of the International Conference
on Mining Software Repositories (MSR). 345ś355.

[6] Hyunmin Seo, Caitlin Sadowski, Sebastian Elbaum, EdwardAftandilian, and Robert
Bowdidge. 2014. Programmers' build errors: a case study (at google). In Proceedings
of the International Conference on Software Engineering (ICSE). 724ś734.

[7] Mohsen Vakilian, Raluca Sauciuc, J. DavidMorgenthaler, and VahabMirrokni. 2015.
Automated Decomposition of Build Targets. In Proceedings of the International
Conference on Software Engineering (ICSE). 123ś133.

[8] Carmine Vassallo, Gerald Schermann, Fiorella Zampetti, Daniele Romano, Philipp
Leitner, Andy Zaidman, Massimiliano Di Penta, and Sebastiano Panichella. 2017.
A Tale of CI Build Failures: an Open Source and a Financial Organization Perspec-
tive. In Proceedings of the International Conference on Software Maintenance and
Evolution (ICSME). 183ś193.

