
Do Sotware Engineers Use Autocompletion Features
Diferently Than Other Developers?

Rahul Amlekar
McGill University, Canada

rahul.amlekar@mail.mcgill.ca

Andrés Felipe Rincón Gamboa
McGill University, Canada

andres.rincon@mail.mcgill.ca

Keheliya Gallaba
McGill University, Canada

keheliya.gallaba@mail.mcgill.ca

Shane McIntosh
McGill University, Canada
shane.mcintosh@mcgill.ca

ABSTRACT

Autocomplete is a common workspace feature that is used to rec-

ommend code snippets as developers type in their IDEs. Users of

autocomplete features no longer need to remember programming

syntax and the names and details of the APImethods that are needed

to accomplish tasks. Moreover, autocompletion of code snippets

may have an accelerating efect, lowering the number of keystrokes

that are needed to type the code. However, like any tool, implicit

tendencies of users may emerge. Knowledge of how developers in

diferent roles use autocompletion features may help to guide future

autocompletion development, research, and training material. In

this paper, we set out to better understand how usage of autocom-

pletion varies among software engineers and other developers (i.e.,

academic researchers, industry researchers, hobby programmers,

and students). Analysis of autocompletion events in the Mining

Software Repositories (MSR) challenge dataset reveals that: (1) rates

of autocompletion usage among software engineers and other de-

velopers are not signiicantly diferent; and (2) although several

non-negligible efect sizes of autocompletion targets (e.g., local

variables, method names) are detected between the two groups,

the rates at which these targets appear do not vary to a signiicant

degree. These inconclusive results are likely due to the small sample

size (n = 35); however, they do provide an interesting insight for

future studies to build upon.

ACM Reference Format:

Rahul Amlekar, Andrés Felipe Rincón Gamboa, Keheliya Gallaba, and Shane

McIntosh. 2018. Do Software Engineers Use Autocompletion Features Difer-

ently ThanOther Developers?. InMSR ’18: MSR ’18: 15th International Confer-

ence on Mining Software Repositories , May 28ś29, 2018, Gothenburg, Sweden.

ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3196398.3196471

1 INTRODUCTION

Most modern Integrated Development Environments (IDEs) pro-

vide autocompletion features, which allow developers to complete

a code fragment by selecting from a list of recommended options

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from permissions@acm.org.

MSR ’18, May 28ś29, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5716-6/18/05. . . $15.00
https://doi.org/10.1145/3196398.3196471

that appear as they type. Developers who leverage autocomplete

no longer need to remember or look up API methods and param-

eters that exist in large codebases. Autocomplete may also save

developers’ time by decreasing the amount of keyboard input that

is required to reference identiiers in the source code.

Recently, there has been a push to improve IDE features like

autocomplete [7]. To build an efective and useful suite of auto-

complete features, knowledge of how autocomplete tools are being

used is essential. Historical tool usage data has been efectively

used to reduce clutter in the IDE workspace [5]. Knowledge of au-

tocomplete usage could be used to guide the following: (1) research

towards areas that autocomplete features do not yet support; (2)

development efort towards popular (or unpopular) features; and (3)

the generation of training material towards infrequently or often

misused autocompletion features.

There are only a limited amount of studies in understanding the

diferences between the software development process across job

roles [1][3]. In this paper, we set out to study whether software

engineers use autocompletion features diferently than other de-

velopers (i.e., academic researchers, industry researchers, hobby

programmers, and students). We measure the overall use of auto-

completion features using autocompletion rates, i.e., the frequency of

autocomplete use in an IDE session. Moreover, we measure speciic

autocompletion use with autocompletion targets, i.e., the type of

code element that is being autocompleted, e.g., variables, methods,

ields, and types. More speciically, through the analysis of the MSR

challenge dataset [9], we address the following research questions:

(RQ1) Howdo the autocompletion rates of software engineers

and other developers compare?

Although we observe a slight diference in the median auto-

completion rates between software engineers (0.703%) and

other developers (0.846%), the diferences are not statistically

signiicant (Mann-Whitney U test, p = 0.814) and the efect

size is negligible (Clif’s delta = 0.012).

(RQ2) How do the autocompletion targets of software engi-

neers and other developers compare?

Local Variable and Parameter autocompletion targets tend to

appear more frequently in the interaction traces of software

engineers, where we detect small Clif’s delta efect sizes of

0.287 and 0.300, respectively. On the other hand,Method and

Type autocompletion targets tend to appear more frequently

in the interaction traces of other developers, where we detect

small and medium Clif’s delta efect sizes of 0.296 and 0.333,

https://doi.org/10.1145/3196398.3196471
https://doi.org/10.1145/3196398.3196471

MSR ’18, May 28ś29, 2018, Gothenburg, Sweden Rahul Amlekar, Andrés Felipe Rincón Gamboa, Keheliya Gallaba, and Shane McIntosh

respectively. However, Mann-Whitney U tests indicate that

none of these results are statistically signiicant (p ≥ 0.05).

Unfortunately, none of our results are statistically signiicant.

The negative statistical hypothesis test results indicate that either

there is no diference between autocompletion behaviour of soft-

ware engineers and other developers or that we have not collected

enough data to distinguish between the two role types. Given the

small number of users (n = 35) who volunteered their job infor-

mation, it is likely that more data is required to arrive at more

deinitive conclusions.

2 STUDY DESIGN

TheMSR challenge dataset provides over 11million IDE interactions

from 85 developers spanning 15,000 hours of work [9]. Figure 1 pro-

vides an overview of our approach to answer our research questions

using the MSR challenge dataset, which, at a high level, is composed

of the data iltering and data analysis steps that we describe below.

In order to aid in future replication of our results, we make our

data and scripts available online.1

2.1 Data Filtering

TheMSR challenge dataset contains plenty of entries that need to be

preprocessed before it can be used to address our research questions.

Below, we describe our data extraction and iltering approach.

DF1: Extract Raw Data. We begin by uncompressing all of the

archives in the dataset. We extract the following information for

each IDE interaction: (1) a unique identiier for the user who per-

formed the interaction (given by the archive name), (2) the identiier

for the session that the interaction appeared within, (3) the time at

which the event was recorded, and (4) the event type, based on the

format of the IDEEvent class of the KaVE project.2

DF2: Select Required Events. To analyze whether the use of au-

tocomplete varies according to job role, we need to analyze two

types of IDEEvents. First, we need UserProileEvents3 to extract the

job role of each IDE user and CompletionEvents to extract data about

the autocompletion events that were performed by each user.

The job role ield is optionalÐ35 of the 85 users in the dataset

have provided a job role within their proile. We group the job

roles into software engineer and other developer categories. The

software engineer category only includes users who provided the

job role of software engineer, whereas those who provided the job

roles of student, academic researcher, industry researcher, and hobby

programmer were merged into the other developers category. There

were 16 other users who had volunteered other self-identifying data

but not the job proile data.

We extract 194,500 autocompletion events from the dataset. For

each autocompletion event, we extract its termination state (i.e.,

canceled, iltered, applied), and the autocompletion target type.

DF3: Filter Unsuitable Data.We start by iltering out the 16 users

who did not provide job proile information at the time of recording

developer-IDE interactions.

1https://doi.org/10.6084/m9.igshare.5984941
2https://github.com/stg-tud/kave-java
3http://www.kave.cc/feedbag/event-generation

Due to the diicult nature of recording developer interactions,

the dataset has events that were not correctly captured. For exam-

ple, there are 14,055 autocompletion events of type GeneralName,

which indicates that the KaVE tool could not classify the autocom-

pletion event into a known type. We ilter these 14,055 incomplete

autocompletion events out of our dataset.

Furthermore, there are three termination types for autocomplete

events. Applied means that the developer selected an autocomple-

tion proposal. Cancelled means that the developer cancelled the

prompted autocompletion proposal. Filtered means that the list of

autocompletion proposals was updated to better match what the

developer was typing. The only autocompletion event that is of

interest for our analysis is the Applied type. Therefore, we ilter out

the 99,453 autocompletion events of type Filtered and the 42,365

autocompletion events of type Cancelled.

2.2 Data Analysis

After data extraction and iltering have been applied, 38,627 suitable

autocompletion events remain in our dataset. To address our re-

search questions, we analyze the surviving autocompletion events

using the following four steps.

DA1: Compute Autocomplete Ratio. To better understand how

often developers are using autocomplete features, we begin by

computing the number of autocompletion events in each session.

Since session length may be a confounding factor, we normalize

the raw count of autocompletion events in a session by the total

number of events in that session. We also normalize the raw count

of autocompletion events in a session by the session duration in

minutes but ind that developers who executed long-running jobs

(e.g., builds of a large system) have disproportionately larger devel-

opment time windows than others. Hence, we select the ratio of

the autocomplete events to the total number of events in a session

as our measure of autocompletion usage.

DA2:CompareAcrossRoles.To address RQ1, we compare the au-

tocomplete usage of software engineers to that of other developers

(researchers, students, and hobby programmers). After calculating

the autocomplete ratios for both of these job proile categories,

we plot the distributions in beanplots. Beanplots are boxplots in

which the vertical curves summarize and compare the distribu-

tions of diferent data sets [4], which in our case correspond to

the session-speciic autocomplete ratios of software engineers and

other developers. The long horizontal black lines show the me-

dian of the autocomplete ratios of software engineers (gray) and

other developers (black). The smaller horizontal white lines provide

histogram-like frequency data.

We then perform Mann-Whitney U tests [6][10] (α = 0.05) to

check if there is a signiicant diference between the ratios of au-

tocompletion usage of software engineers and other developers.

Finally, we use Clif’s delta [2] to measure the efect size, which

is negligible when 0 ≤ delta < 0.147, small when 0.147 ≤ delta ≤

0.33, medium when 0.33 ≤ delta ≤ 0.474, and large otherwise. We

perform Mann-Whitney U tests and Clif’s delta test since these are

non-parametric tests and our data is not normally distributed.

DA3: Identify Autocomplete Type. There are 12 types of targets

that can be autocompleted, e.g., type, variable, or method names.

In RQ2, we set out to study which targets tend to be autocompleted

https://doi.org/10.6084/m9.figshare.5984941
https://github.com/stg-tud/kave-java
http://www.kave.cc/feedbag/event-generation

Do Sotware Engineers Use Autocompletion Features

Diferently Than Other Developers? MSR ’18, May 28ś29, 2018, Gothenburg, Sweden

Data Filtering

Data Analysis

MSR Challenge
Data

Suitable data for
analysis

Raw
Data

Desired
Events

DF2
Select

required
events

DF3
Filter

undesirable
data

DA2

Compare
across roles

DA4

Compare
across types

DA1
Compute

autocomplete
ratio

DA3
Identify

autocomplete
type

DF1

Extract
raw data

Autocomplete

usage ratio

Autocomplete

information

RQ2

RQ1

Figure 1: An overview of our approach to analyzing the MSR challenge dataset.

more often and whether the frequency of the target autocompletion

varies based on job role.

We identify which target a particular autocomplete selection

belongs to using a łname grammar for code elementsž [8]. There

are 12 autocomplete target types in the datset but six are iltered

out because they have less than 20 data points or are corrupted.

So we base our analysis on the remaining six autocomplete target

types:

• FieldName: The name of a ield of an object is autocom-

pleted

• LocalVariableName: The name of a variable that is deined

in the local scope is autocompleted

• MethodName: The name of a method is autocompleted

• ParameterName: An argument or a parameter to be in-

cluded in a method call is autocompleted

• PropertyName: A getter or a setter is autocompleted

• TypeName: A type (e.g., Int, Char, Byte) is autocompleted

For the sake of completeness, the iltered out targets are Names-

paceName, EventName, AliasName, GeneralName, TypeParameter-

Name, and PredeinedTypeName

DA4: Compare Across Types. We merge the autocompletion

event type data with the user proile data and plot the frequency

of autocompletion usage stratiied by event type. We again use

beanplots (one plot per event type) to compare the distributions

of autocomplete usage of software engineers and other developers.

The code for this can be found in our replication package.4 We also

use the Mann-Whitney U tests and Clif’s delta to test for signii-

cant diferences among the event types and measure the efect size

between the event types, respectively. As in DA2, we choose these

tests since these are non-parametric and our data is not normally

distributed.

3 STUDY RESULTS

In this section, we present the results of our study with respect to

our two research questions. For each research question, we irst

discuss the motivation and then present the results.

RQ1: How do the autocompletion rates of
software engineers and other developers
compare?

Motivation. To improve autocompletion tools and techniques, it

would be useful to know who is using existing features. This data

4https://doi.org/10.6084/m9.igshare.5984941

0
1

2
3

4
5

6
7

All developers

A
u
to

c
o
m

p
le

te
 a

p
p
lie

d
 (

a
s
 a

 %
 o

f
to

ta
l
e
ve

n
ts

)

Other Developers

Software Engineers

Figure 2: Beanplot of autocompletion applied as a percent-

age of total events

would help autocompletion tool developers to better tailor existing

solutions to its userbase. Moreover, this data may reveal types

of users who are not currently beneiting from autocompletion

features. Such types of users may need better support in order to

fully leverage autocompletion features.

Results. Autocompletion rates are similar for both software

engineers and other developers. Figure 2 provides an overview

of the distributions of autocompletion rates using a beanplot (see

Section 2.2). The plots show that the median rate for other devel-

opers (0.846%) is slightly higher than that of software engineers

(0.703%); however, a Mann-Whitney U test shows that the diference

is not statistically signiicant (p = 0.814). Moreover, the Clif’s delta

is 0.012, which is considered negligible.

Figure 2 also shows that the diference in data dispersion is

minimal. Indeed, the standard deviation in autocompletion rates

for other developers is 0.682 and for software engineers is 1.017.

Observation 1: Autocompletion rates are similar for both software

engineers and other developers.

https://doi.org/10.6084/m9.figshare.5984941

MSR ’18, May 28ś29, 2018, Gothenburg, Sweden Rahul Amlekar, Andrés Felipe Rincón Gamboa, Keheliya Gallaba, and Shane McIntosh

0

10

20

30

40

50

LocalVariable Type Method Field Property Parameter

P
e

rc
e

n
ta

g
e

 o
f

a
p

p
lie

d
 a

u
to

c
o

m
p

le
te

Other Developers

Software Engineers

Figure 3: Beanplot of autocomplete target types by job role as a percentage of autocomplete applied

RQ2: How do the autocompletion targets of
software engineers and other developers
compare?

Motivation. To gain a more detailed perspective of autocomplete

usage, we are interested in breaking autocompletion down by its

target, and checking whether software engineers are more likely

to autocomplete targets of a particular type.

Results. Both software engineers and other developers auto-

complete similar target types. Figure 3 shows the distributions

of autocomplete usage in a beanplot. We again notice slight dif-

ferences in the medians of the distributions. Moreover, there are

non-negligible efect sizes in four of these six distributions. For

Local Variable (small Clif’s delta of 0.287) and Parameter (small

Clif’s delta of 0.300), software engineers tend to autocompletemore

than other developers. For Type (medium Clif’s delta of 0.333) and

Method (small Clif’s delta of 0.296), other developers tend to auto-

complete more than software engineers. However, Mann-Whitney

U tests indicate that these sample diferences are not statistically

signiicant (p-value ≥ 0.05) for any of the autocompletion target

types. Therefore, we cannot reject the null hypothesis that the

samples of both job roles come from the same population (i.e., we

cannot detect a signiicant diference).

Observation 2: While we do observe non-negligible efect sizes in

four of the six autocompletion targets, Mann-Whitney U test results

are inconclusive. Thus, we cannot conclude that the software engi-

neers and other developers autocomplete target types diferently.

4 CONCLUSIONS

Understanding how developers use autocomplete is essential for

autocomplete to be improved. Our potential variation point among

autocomplete users is their job role. To understand how a software

engineer’s use of autocomplete features difers from that of other

developers, we analyze autocompletion usage in the MSR challenge

dataset, observing that: (1) job role does not share a signiicant

relationship with rates of autocompletion; and (2) four of the six

studied autocompletion target types have non-negligible efect sizes;

however, Mann-Whitney U tests are inconclusive.

The results from our statistical analysis are inconclusive. No

signiicant diferences in the autocompletion usage of software

engineers and other developers were discovered. However, we sus-

pect that the issue is due to the relatively small size of users who

provided job role information in the MSR challenge dataset (n = 35).

Our observations are an interesting starting point for future

studies. Developers with diferent job roles usually have diferent

goals, e.g., a student may develop software with the goal of com-

pleting an assignment, a software engineer may develop to meet

a client’s expectations, and a hobby programmer may be working

on a self-chosen project. Therefore, we believe that by comparing

autocomplete data of diferent job roles, we can gain more insight

in the diferences in their software development process. More data

is needed to arrive at more concrete conclusions.

REFERENCES
[1] J. Carver, L. Jaccheri, S. Morasca, and F. Shull. 2003. Issues in using students in

empirical studies in software engineering education. In Proceedings. 5th Interna-
tional Workshop on Enterprise Networking and Computing in Healthcare Industry
(IEEE Cat. No.03EX717). 239ś249. https://doi.org/10.1109/METRIC.2003.1232471

[2] Norman Clif. 1993. Dominance statistics: Ordinal analyses to answer ordinal
questions. Psychological Bulletin 114, 3 (1993), 494ś509. http://dx.doi.org/10.1037/
0033-2909.114.3.494

[3] Martin Höst, Björn Regnell, and Claes Wohlin. 2000. Using Students as SubjectsÐ
A Comparative Study of Students and Professionals in Lead-Time Impact As-
sessment. Empirical Software Engineering 5, 3 (01 Nov 2000), 201ś214. https:
//doi.org/10.1023/A:1026586415054

[4] Peter Kampstra. 2008. Beanplot: A Boxplot Alternative for Visual Comparison of
Distributions. Journal of Statistical Software, Code Snippets 28, 1 (2008), 1ś9.

[5] Mik Kersten and Gail C. Murphy. 2006. Using Task Context to Improve Program-
mer Productivity. In Proceedings of the International Symposium on the Foundations
of Software Engineering (FSE). 1ś11.

[6] H. B. Mann and D. R. Whitney. 1947. On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other. The Annals of Mathematical
Statistics 18, 1 (1947), 50ś60. http://www.jstor.org/stable/2236101

[7] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and
Michele Lanza. 2014. Mining StackOverlow to Turn the IDE into a Self-conident
Programming Prompter. In Proceedings of the 11th Working Conference on Mining
Software Repositories (MSR 2014). ACM, New York, NY, USA, 102ś111. https:
//doi.org/10.1145/2597073.2597077

[8] Sebastian Proksch. 2017. Enriched Event Streams: A General Platform For Empirical
Studies On In-IDE Activities Of Software Developers. Ph.D. Dissertation. Technische
Universität, Darmstadt. http://tuprints.ulb.tu-darmstadt.de/6971/

[9] Sebastian Proksch, Sven Amann, and Sarah Nadi. 2018. Enriched Event Streams: A
General Dataset for Empirical Studies on In-IDEActivities of Software Developers.
In Proceedings of the 15th Working Conference on Mining Software Repositories.

[10] Frank Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biometrics
Bulletin 1, 6 (1945), 80ś83. http://www.jstor.org/stable/3001968

https://doi.org/10.1109/METRIC.2003.1232471
http://dx.doi.org/10.1037/0033-2909.114.3.494
http://dx.doi.org/10.1037/0033-2909.114.3.494
https://doi.org/10.1023/A:1026586415054
https://doi.org/10.1023/A:1026586415054
http://www.jstor.org/stable/2236101
https://doi.org/10.1145/2597073.2597077
https://doi.org/10.1145/2597073.2597077
http://tuprints.ulb.tu-darmstadt.de/6971/
http://www.jstor.org/stable/3001968

