
Improving the Robustness and Efficiency of
Continuous Integration and Deployment

Keheliya Gallaba∗
McGill University, Montréal, Canada

keheliya.gallaba@mail.mcgill.ca

Abstract—Modern software is developed at a rapid pace. To
sustain that rapid pace, organizations rely heavily on automated
build, test, and release steps. To that end, Continuous Integration
and Continuous Deployment (CI/CD) services take the incremen-
tal codebase changes that are produced by developers, compile
them, link, and package them into software deliverables, verify
their functionality, and deliver them to end users.

While CI/CD processes provide mission-critical features, if they
are misconfigured or poorly operated, the pace of development
may be slowed or even halted. To prevent such issues, in this
thesis, we set out to study and improve the robustness and
efficiency of CI/CD.

The thesis will include (1) conceptual contributions in the
form of empirical studies of large samples of adopters of CI/CD
tools to discover best practices and common limitations, as
well as (2) technical contributions in the form of tools that
support stakeholders to avoid common limitations (e.g., data
misinterpretation issues, CI configuration mistakes).

I. INTRODUCTION

Continuous Integration (CI) [1] is a software development
practice where changes to a codebase are integrated into
upstream repositories after being built and verified by an
automated workflow. Continuous Deployment (CD) takes this
a step further, ensuring that the software can be reliably
released at any time by automating the deployment and
release workflows as well. Prior work [2]–[5] has shown that
CI/CD is broadly adopted by open source and proprietary
software teams (e.g., Mozilla, Google, Microsoft, and ING).
The adoption of CI/CD has been linked to increased developer
productivity [6], speeding up development [7], and improving
software quality [4], [8].

Due to the popularity of CI/CD, cloud-based CI/CD ser-
vice providers (e.g., TRAVIS CI, CIRCLECI, JENKINS, and
APPVEYOR) have also emerged, making CI/CD available to
the masses. However, teams often encounter difficulties when
adopting CI/CD in their organizations leading to unstable
software delivery pipelines and wasted resources. For example,
suboptimal configuration of Mozilla’s CI service was inflating
the operating cost of their CI service by 16%.1 Moreover, a
typo in the CI specification of the geoscixyz/gpgLabs2 project
halted deployment of new releases.3 In our work, we tackle
three problems that relate to CI/CD services:

∗The author is advised by Dr. Shane McIntosh of McGill University.
1 https://oduinn.com/2013/12/13/the-financial-cost-of-a-checkin-part-2/
2 https://github.com/geoscixyz/gpgLabs
3 https://github.com/geoscixyz/gpgLabs/issues/72

Misconfiguration of CI/CD Environments. Improperly con-
figuring CI/CD environments may lead to suboptimal
performance (e.g., violating the semantics of CI/CD spec-
ifications hinders the runtime optimizations that CI/CD
service providers can perform) or conceal faults (e.g.,
misspelled properties and their associated commands are
silently ignored by popular CI/CD service providers such
as TRAVIS CI). To study how real CI/CD workflows
are configured, we conduct empirical studies of use
and misuse of features in CI/CD specification files [9].
Based on trends from our empirical studies, we propose
tools4 to detect and remove instances of feature misuse.
Furthermore, we offer recommendations to guide future
development and maintenance of CI/CD specifications.

Misinterpretation of CI/CD Results. CI/CD results are of-
ten analyzed “off the shelf”. However, unmitigated noise
and variations in build complexity can hinder effective
decision making in research and practice. In this aspect,
we set out to analyze noise and characterize differences
in CI/CD results [10]. We also provide tools5 and
recommendations for mitigating noise in CI/CD results.

Inefficient Use of CI/CD Resources. A key goal of CI/CD
is to provide rapid feedback to software teams and
releases to users throughout the development process.
Software organizations invest resources in the operation
and maintenance of CI/CD services in order to benefit
from such a rapid feedback and release cycle. However,
inefficient queues and long job durations can lead to
wasted resources.
We are currently conducting empirical studies of historical
CI/CD data to understand bottlenecks with the goal
of evaluating improvements (e.g., intelligent queuing
algorithms, build optimization).

Paper Organization. The remainder of the paper is organized
as follows. Section II details how modern CI/CD services
are configured and positions our research with prior work.
Section III presents our research hypothesis. Section IV
summarizes our work on improving the robustness of CI/CD
services. Section V presents our plan to improve the efficiency
of CI/CD services. Section VI draws conclusions.

4 https://github.com/software-rebels/hansel_and_gretel
5 https://github.com/software-rebels/bbchch

https://oduinn.com/2013/12/13/the-financial-cost-of-a-checkin-part-2/
https://github.com/geoscixyz/gpgLabs
https://github.com/geoscixyz/gpgLabs/issues/72
https://github.com/software-rebels/hansel_and_gretel
https://github.com/software-rebels/bbchch

II. BACKGROUND AND RELATED WORK

In this section, we define the concepts that are needed to
understand our work. In this paper, we follow the definitions
of the popular TRAVIS CI service provider.6 However, the
problems that we discuss and the solutions that we propose are
general, and will likely apply to other CI/CD environments.

A build is comprised of jobs, each of which may (1) target
a different variant of the development or runtime environment
of the project; or (2) execute an independent set of tasks to
achieve parallelization. Once all of the jobs in the build are
finished, the build is also finished.

Each job is comprised of three main phases: install, script,
and deploy. Each phase may be preceded by a before sub-phase
or followed by an after sub-phase. These sub-phases are used
to ensure that all of the pre-conditions are satisfied before the
main phase is executed (before install, before script, before
deploy), and all of the post-conditions are met after executing
the main phase (after success, after failure, after deploy).

Jobs in TRAVIS CI conclude with one of four outcomes:

• Passed. The project was built successfully and passed all
tests. All phases terminated with an exit code of zero.

• Errored. Any of the commands that are specified in the
before_install, install, or before_script phases of the build
terminated with a non-zero exit code. When this occurs,
the job terminates immediately.

• Failed. A command in the script phase terminated with
a non-zero exit code. When this occurs, the job switches
to the after_failure phase and then terminates.

• Cancelled. A TRAVIS CI user with sufficient permissions
aborted the build using the web interface or the API.

Projects that use the TRAVIS CI service inform TRAVIS
CI about how jobs are to be executed using a .travis.yml
specification file. The properties that are set in this configuration
file specify which revisions will initiate builds, how the build
environments are to be configured for executing builds, and
how different teams or team members should be notified about
the outcome of the build. Furthermore, the file specifies which
tools are required during the build process and the order in
which these tools need to be executed.

These configuration options can be mainly divided into two
sections: node configuration, which specifies how nodes in the
CI service should be prepared before building commences; and
build process configuration, which specifies each step in the
execution of its build jobs.

Although CI/CD provides many benefits, software teams
often encounter various difficulties when adopting CI/CD in
their organizations. Like other software artifacts, CI/CD-related
artifacts also suffer from quality issues that are identified in
existing software quality evaluation standards (i.e., ISO/IEC
9126 [11], SQuaRE [12]). Due to their importance to software
organizations, we choose to focus on robustness and efficiency
aspects in this thesis, leaving other quality aspects (e.g.,
usability, security, portability) to future work.

6 https://docs.travis-ci.com/user/for-beginners/

A. Ensuring Robustness in CI/CD Services
Prior work suggests various techniques for detecting and

repairing unstable configurations that are indirectly related to
CI/CD. Macho et al. [13] propose a tool to automatically repair
builds that break due to dependency-related issues. Hassan and
Wang [14] use existing build script fixes to resolve new build
failures by recommending fix patterns. By applying text mining
techniques and qualitative analysis, Rahman and Williams [15]
identify properties that characterize defective configuration
scripts used for CD. Vassallo et al. [16] propose a tool that
summarizes the reasons when a build fails and suggests possible
solutions found on the Internet. Sharma et al. [17] catalog
smells that are related to Infrastructure as Code (IaC).

To the best of our knowledge, our work on detecting and
removing CI configuration anti-patterns is the first of its kind.
In more recent work, Vassallo et al. [18] have complemented
our static anti-pattern list with process-related anti-patterns.

B. Identifying and Fixing CI/CD Resource Bottlenecks
Ghaleb et al. [19] study characteristics of CI/CD builds that

may be associated with the long build durations and recommend
caching content that rarely changes to speed up builds. This
motivates our work on reducing the execution time of builds.

Abdalkareem et al. [20] report on savings that can be
achieved by automatically skipping the CI/CD process entirely
for changes that are unlikely to impact the build outcome.
Schermann et al. [21] discuss how multiple experiments can
be run efficiently in parallel in CD pipelines by formulating
the scenario as an optimization problem and using a genetic
algorithm. Esfahani et al. [22] propose using content-based
caching to run build-related tasks only when needed. Our
proposed approach for reducing build execution time accelerates
builds using both caching and task parallelization.

Cao et al. [23] propose analyzing an annotated build
dependency graph to forecast build duration. Tufano et al. [24]
propose a predictive model to preemptively alert developers on
the extent to which their software changes may impact future
building activities. While these techniques also aim to improve
the transparency of CI/CD services, they are complementary
to our focus of predicting queue time.

III. RESEARCH HYPOTHESIS

In this thesis, we mine historical data from CI/CD services
to understand limitations in and propose improvements to state-
of-the-art CI/CD services. More specifically, we evaluate the
following research hypothesis:

Defect-prone and slow CI/CD pipelines can lead to
considerable amounts of wasted resources for CI/CD
adopters and service providers. Specifications and
outcome data from CI/CD services can be leveraged
to increase the robustness and efficiency of CI/CD.

As shown in Figure 1 we strive to improve the (1) robustness
and (2) efficiency of CI/CD services. The details of our current
progress and future plans for achieving these objectives are
explained in the next two sections.

https://docs.travis-ci.com/user/for-beginners/

Research
Objectives

(RO2) In Progress
Efficiency in CI/CD Services

(RO1) Completed
Robustness in CI/CD Services

Research
Questions

Potential
Outcomes

(RQ5)
Can CI/CD be

accelerated without
relying on the build
dependency graph?

Accelerating
CI by

dependency
analysis

(RQ1)
How are features

in CI/CD
environments
being used?

(RQ2)
How are features

 in CI/CD
environments

being misused?

(RQ3)
To what extent are

noise and heterogeneity
present in off-the-shelf
CI/CD outcome data?

(RQ4)
Is CI/CD queuing
time a problem?
If so, how can

it be improved?

Tools for
Detection and

Removal of
Feature Misuses

Tools and
Recommendations

for Mitigating
Noise in CI/CD Data

Guidance for
Development and
Maintenance of

CI/CD Specifications

Pragmatic
CI/CD

Scheduling
Schemes

Limitations in Current CI/CD
Tools and Services

Misinterpretation of
CI/CD Results

Inefficient Use of
CI/CD Resources

Misconfiguration of
CI/CD Environments

Fig. 1. An Overview of Our Proposed Thesis

IV. IMPROVING THE ROBUSTNESS OF CI/CD (RO1)
In this section, we explain the motivation, our research

approach, and the obtained results for improving the robustness
of CI specifications and CI outcome data.

A. More Robust CI/CD Specifications

Problem. Like programming languages, configuration lan-
guages also offer features, which can be used or misused.
We first set out to study the ways in which CI/CD features are
being used and misused.
Motivation. A typical CI/CD service has different nodes for
creating build jobs, processing them, and reporting on the
outcome. While configuring job creation and job reporting
nodes is relatively simple (e.g., reporting only needs a contact
method like an email address and a triggering event type like
build failures), configuring job processing nodes is complex.
Misconfiguration of CI/CD environments may waste resources
or conceal faults. To address this, we conduct two empirical
studies to answer the research questions, (RQ1) How are
features in CI/CD environments being used? and (RQ2)
How are features in CI/CD environments being misused?
Approach. In this work [10], to study how features in CI/CD
specification files are being used, we analyze a curated sample
of 9,312 open source projects that are hosted on GITHUB and
have adopted the popular TRAVIS CI service. The sampled
projects are selected based on size and activity, and filtered
to remove forks and other duplicates. Furthermore, we define
CI/CD misconfiguration patterns and create development tools4

that can automatically detect and remove them.
Results. We find that explicit deployment code is rare—48% of
the studied TRAVIS CI specification code is instead associated
with configuring job processing nodes. This shows that the
developers rarely use CI/CD services for CD, despite CI/CD
service providers supporting the deployment to many popular
cloud services including AWS, AZURE, and HEROKU.

To analyze feature misuse, we propose HANSEL—an anti-
pattern detection tool for TRAVIS CI specifications. We define

four anti-patterns and HANSEL detects anti-patterns in the
TRAVIS CI specifications of 894 projects in the corpus (10%),
achieving a recall of 83% in a sample of 100 projects.
Furthermore, we propose GRETEL—an anti-pattern removal
tool for TRAVIS CI specifications, which can remove 70% of
the most frequently occurring anti-pattern automatically. Using
GRETEL, we have produced 36 accepted pull requests that
remove TRAVIS CI anti-patterns automatically.

B. More Robust CI/CD Outcome Data

Problem. CI/CD outcome data is used by software practitioners
and researchers when building tools and proposing techniques
to solve software engineering problems. However, it may be
harmful to use this data “off the shelf” without checking for
noise and complexities. In this work, we set out to characterize
CI/CD outcome data according to harmful assumptions that
one may make about its cleanliness and homogeneity.

Motivation. Consider the example of the zdavatz/spreadsheet7

project, which sets the allow_failure property in the initial
build specification of the project to ignore failures when
determining the final outcome of the build. However, this
setting is never removed from the build specification during
the five-year history of the project, violating the intended use of
the feature.8 Assuming the outcome of such builds to be entirely
clean when there are many suppressed or ignored failures can
yield incorrect inferences when analyzing CI/CD outcome data.
In addition, builds vary in terms of the number of executed
jobs and the number of supported build-time configurations.
If prediction models are trained using data that treats these
heterogeneous builds identically, model fitness may suffer and
the insights that are derived from the models will likely be
misleading. To better understand the extent to which noise
and heterogeneity are present in CI/CD outcome data, we
conduct an empirical study to answer the research question,

7 https://github.com/zdavatz/spreadsheet
8 https://github.com/zdavatz/spreadsheet/blame/master/.travis.yml

https://github.com/zdavatz/spreadsheet
https://github.com/zdavatz/spreadsheet/blame/master/.travis.yml

(RQ3) To what extent are noise and heterogeneity present
in off-the-shelf CI/CD outcome data?
Approach. In this work [9], we analyze CI/CD outcome
data from large software projects to quantify the noise and
characterize their nuances. For this purpose, we use openly
available project metadata and CI/CD results of 1,276 GITHUB
projects that use TRAVIS CI.
Results. Passing build outcomes do not always indicate that
the build was entirely clean. 12% of passing builds have an
actively ignored failure. In 83% of branches from broken builds,
the breakage persists. These breakages persist for up to 485
commits, suggesting that these breakages are not distracting.

One in every 7 to 11 builds is incorrectly labeled. This
noise may influence analyses based on CI/CD outcome data,
suggesting that noise needs to be filtered out before subsequent
analyses of CI/CD outcome data.

V. IMPROVING THE EFFICIENCY OF CI/CD (RO2)
Developers adopt CI/CD with the intention of speeding up

development [8]. However, the results of the CI/CD builds
could be delayed due to waiting time in the queues of CI/CD
service providers and bottlenecks in the execution of CI/CD
jobs. We set out to study how queuing and job execution time
can be reduced to improve overall CI/CD performance.

A. Queuing Time

Problem. The time spent by builds waiting in processing
queues can impact the perceived build duration. Since slow
CI/CD feedback hinders developers and slows releases, long
queuing time can adversely affect the user experience of CI/CD
services and software team productivity.
Motivation. Builds that wait in queues for long periods before
being processed generate waste for organizations that depend
on rapid CI/CD cycles. If these delays are common, research
into improvements of CI/CD queuing time would be valuable.
Therefore, we are currently conducting an empirical study to
investigate (RQ4) Is CI/CD queuing time a problem? If so,
how can it be improved?
Envisioned Contribution. Historical queuing time data is
being analyzed to better understand trends and tendencies. More
pragmatic CI/CD scheduling algorithms that will drive queuing
time down, improve CI/CD throughput, and/or optimize CI/CD
infrastructure usage will be evaluated.
Proposed Approach. First, we will analyze the proportion of
the perceived build duration that is spent in queues, and trends
in that proportion over time. Next, assuming that queuing time
accounts for a non-negligible proportion of the perceived build
duration, we will use historical data to provide transparency for
adopters of CI/CD services by estimating the expected queuing
time of future builds. This will allow developers to plan their
work more effectively. For example, if CI/CD results will be
provided within a few minutes, a developer may choose to stay
focused on that task, avoiding a costly context switch [25], [26].
Finally, we will improve queuing time by evaluating different
queuing algorithms [27]–[30] under historical CI/CD service
workload conditions.

B. Execution Time

Problem. Long running builds impact developer productivity
and increase energy costs. Identifying cacheable content and
parallelizable tasks can be used to accelerate CI builds [19],
[22]. However, current build tools require explicit and complete
declarations of dependency graphs and labeling of cacheable
content to optimize execution.
Motivation. Software organizations invest resources into
the operation and maintenance of CI/CD pipelines. Large
organizations like Microsoft [22] and Google [3] leverage
distributed caching and dependency parallelization to achieve
faster organization-wide build performance. Distributed build
caching and job parallelization rely upon the correctness of
a hand-maintained build dependency graphs expressed within
build files. Like any other software artifact, these build files
may contain defects. These defects may take the form of over-
or under-specified dependency graphs [31]. Over-specification
would lead to suboptimal build parallelization, i.e., tasks
that could have been executed in parallel may be executed
sequentially due to an unnecessary dependency being respected.
More concerningly, under-specification would introduce non-
deterministic behavior, i.e., tasks that share an order dependency
may be erroneously performed in parallel, leading to (false)
build breakage. Therefore, we are conducting an empirical
study in collaboration with MicroClusters Inc., a software
company focusing on accelerating CI/CD, to answer the
research question, (RQ5) Can CI/CD be accelerated without
relying on the build dependency graph?
Envisioned Contribution. In this project, we aim to deliver
a software solution that can safely accelerate CI/CD tasks by
decomposing them into truly independent subtasks that can be
executed in parallel. The key restriction that we operate under
is that we cannot rely on the build files for a correct build
dependency graph.
Proposed Approach. First, we will extract a concrete build
flow graph by tracing the system calls during build execution.
Second, we will design an analysis of the flow graph that
can be used to safely accelerate future CI/CD builds. Finally,
we will perform a large-scale empirical evaluation of the
job decomposition solution by comparing the duration of
accelerated CI/CD builds of a sample of projects to baselines
from popular CI/CD service providers.

VI. CONCLUSION

When adopting Continuous Integration (CI) and Continuous
Deployment (CD) practitioners often encounter problems: 1)
Misconfiguration of CI/CD Environments, 2) Misinterpretation
of CI/CD Results, and 3) Inefficient Use of CI/CD Resources.
In this thesis, we set out to obtain actionable information
from historical data in order to improve the robustness and
efficiency of CI/CD tools. Our current progress and future
plans will provide tools and guidelines for practitioners, and
also recommendations for researchers that will help them to
produce more robust configuration, more valid reports, and
more efficiently use CI/CD resources.

REFERENCES

[1] P. M. Duvall, S. Matyas, and A. Glover, Continuous Integration:
Improving Software Quality and Reducing Risk. Pearson Education,
2007.

[2] C. AtLee, L. Blakk, J. O’Duinn, and A. Z. Gasparnian, “Firefox
release engineering,” in The Architecture of Open Source Applications:
Structure, Scale, and a Few More Fearless Hacks, A. Brown and
G. Wilson, Eds. Creative Commons, 2012, ch. 2. [Online]. Available:
http://www.aosabook.org/en/ffreleng.html

[3] H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and R. Bowdidge,
“Programmers’ build errors: a case study (at Google),” in Proceedings
of the International Conference on Software Engineering (ICSE), 2014.
doi: 10.1145/2568225.2568255 pp. 724–734.

[4] A. Miller, “A hundred days of continuous integration,” in Proceedings
of the Agile Conference, 2008, pp. 289–293.

[5] C. Vassallo, G. Schermann, F. Zampetti, D. Romano, P. Leitner,
A. Zaidman, M. D. Penta, and S. Panichella, “A tale of CI build failures:
An open source and a financial organization perspective,” in Proceedings
of the International Conference on Software Maintenance and Evolution
(ICSME), 2017. doi: 10.1109/icsme.2017.67 pp. 183–193.

[6] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality and
productivity outcomes relating to continuous integration in GitHub,” in
Proceedings of the Joint Meeting of the European Software Engineering
Conference and the International Symposium on the Foundations of
Software Engineering (ESEC/FSE), 2015. doi: 10.1145/2786805.2786850
pp. 805–816.

[7] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation. Pearson
Education, 2010.

[8] G. Pinto, F. Castor, R. Bonifacio, and M. Rebouças, “Work practices
and challenges in continuous integration: A survey with Travis CI users,”
Software: Practice and Experience, vol. 48, no. 12, pp. 2223–2236, 2018.
doi: 10.1002/spe.2637

[9] K. Gallaba, C. Macho, M. Pinzger, and S. McIntosh, “Noise and
heterogeneity in historical build data: an empirical study of Travis CI,”
in Proceedings of the International Conference on Automated Software
Engineering (ASE), 2018. doi: 10.1145/3238147.3238171 pp. 87–97.

[10] K. Gallaba and S. McIntosh, “Use and misuse of continuous inte-
gration features: An empirical study of projects that (mis)use Travis
CI,” IEEE Transactions on Software Engineering (TSE), 2018. doi:
10.1109/tse.2018.2838131

[11] ISO/IEC, “ISO/IEC 9126:2001 software engineering – product quality,”
2001. [Online]. Available: https://www.iso.org/standard/22749.html

[12] ——, “ISO/IEC 25010:2011 systems and software engineering –
systems and software quality requirements and evaluation (SQuaRE)
– system and software quality models,” 2011. [Online]. Available:
https://www.iso.org/standard/35733.html

[13] C. Macho, S. McIntosh, and M. Pinzger, “Automatically repairing
dependency-related build breakage,” in Proceedings of the International
Conference on Software Analysis, Evolution, and Reengineering (SANER),
2018. doi: 10.1109/SANER.2018.8330201 pp. 106–117.

[14] F. Hassan and X. Wang, “HireBuild: An Automatic Approach to
History-Driven Repair of Build Scripts,” in Proceedings of the In-
ternational Conference on Software Engineering (ICSE), 2018. doi:
10.1145/3180155.3180181 pp. 1078–1089.

[15] A. Rahman and L. Williams, “Characterizing defective configuration
scripts used for continuous deployment,” in Proceedings of International
Conference on Software Testing, Validations, and Verification (ICST),
2018. doi: 10.1109/ICST.2018.00014 pp. 34–45.

[16] C. Vassallo, S. Proksch, T. Zemp, and H. C. Gall, “Un-break my build:
Assisting developers with build repair hints,” in Proceedings of the
International Conference on Program Comprehension (ICPC), 2018.
doi: 10.1145/3196321.3196350 pp. 41–51.

[17] T. Sharma, M. Fragkoulis, and D. Spinellis, “Does your configuration
code smell?” in Proceedings of the International Conference on Mining
Software Repositories (MSR), 2016. doi: 10.1145/2901739.2901761 pp.
189–200.

[18] C. Vassallo, S. Proksch, H. C. Gall, and M. Di Penta, “Automated
reporting of anti-patterns and decay in continuous integration,” in
Proceedings of the International Conference on Software Engineering
(ICSE), 2019. doi: 10.1109/ICSE.2019.00028 pp. 105–115.

[19] T. A. Ghaleb, D. A. da Costa, and Y. Zou, “An empirical study of
the long duration of continuous integration builds,” Empirical Software
Engineering (EMSE), 2019. doi: 10.1007/s10664-019-09695-9

[20] R. Abdalkareem, S. Mujahid, E. Shihab, and J. Rilling, “Which commits
can be CI skipped?” IEEE Transactions on Software Engineering (TSE),
2019. doi: 10.1109/tse.2019.2897300

[21] G. Schermann and P. Leitner, “Search-based scheduling of experiments
in continuous deployment,” in Proceedings of the International Con-
ference on Software Maintenance and Evolution (ICSME), 2018. doi:
10.1109/icsme.2018.00059 pp. 485–495.

[22] H. Esfahani, J. Fietz, Q. Ke, A. Kolomiets, E. Lan, E. Mavrinac,
W. Schulte, N. Sanches, and S. Kandula, “CloudBuild: Microsoft’s
distributed and caching build service,” in Proceedings of the International
Conference on Software Engineering Companion (ICSE), 2016. doi:
10.1145/2889160.2889222 pp. 11–20.

[23] Q. Cao, R. Wen, and S. McIntosh, “Forecasting the duration of incremen-
tal build jobs,” in Proceedings of the International Conference on Software
Maintenance and Evolution (ICSME), 2017. doi: 10.1109/icsme.2017.34
pp. 524–528.

[24] M. Tufano, H. Sajnani, and K. Herzig, “Towards predicting the
impact of software changes on building activities,” in Proceedings
of the International Conference on Software Engineering: New
Ideas and Emerging Results (ICSE-NIER), 2019. doi: 10.1109/ICSE-
NIER.2019.00021 pp. 49–52.

[25] M. Züger and T. Fritz, “Interruptibility of software developers and its
prediction using psycho-physiological sensors,” in Proceedings of the
International Conference on Human Factors in Computing Systems (CHI),
2015. doi: 10.1145/2702123.2702593 pp. 2981–2990.

[26] A. N. Meyer, L. E. Barton, G. C. Murphy, T. Zimmermann, and
T. Fritz, “The work life of developers: Activities, switches and perceived
productivity,” IEEE Transactions on Software Engineering, vol. 43, no. 12,
pp. 1178–1193, 2017. doi: 10.1109/tse.2017.2656886

[27] K. Lee and K. Lim, “Semi-online scheduling problems on a small number
of machines,” Journal of Scheduling, vol. 16, no. 5, pp. 461–477, 2013.
doi: 10.1007/s10951-013-0329-x

[28] E. Lübbecke, O. Maurer, N. Megow, and A. Wiese, “A new approach to
online scheduling,” ACM Transactions on Algorithms, vol. 13, no. 1, pp.
1–34, 2016. doi: 10.1145/2996800

[29] J. Boyar, L. M. Favrholdt, C. Kudahl, K. S. Larsen, and J. W. Mikkelsen,
“Online algorithms with advice: A survey,” ACM SIGACT News, vol. 47,
no. 3, pp. 93–129, 2016. doi: 10.1145/2993749.2993766

[30] S. Albers and M. Hellwig, “Online makespan minimization with parallel
schedules,” Algorithmica, vol. 78, no. 2, pp. 492–520, 2016. doi:
10.1007/s00453-016-0172-5

[31] C.-P. Bezemer, S. McIntosh, B. Adams, D. M. German, and A. E. Hassan,
“An empirical study of unspecified dependencies in make-based build
systems,” Empirical Software Engineering (EMSE), vol. 22, no. 6, pp.
3117–3148, 2017. doi: 10.1007/s10664-017-9510-8

http://www.aosabook.org/en/ffreleng.html
https://www.iso.org/standard/22749.html
https://www.iso.org/standard/35733.html

